
CSE110A: Compilers
June 9, 2023

Topics: 
• Homework review
• Class review



Announcements

• Homework 5 due on Sunday
• Given that our final is so early, I will give an extension until Wednesday
• No office hours next week though
• Piazza support will be sparse

• Homework 3 retesting is done today
• If you fixed your exceptions
• Also test 9 was off; some people failed when they shouldn’t have. We will

update it

• Rest of grades coming ASAP. Plan is to be done by next thursday



Announcements

• Final: Monday June 12: 8 AM to 11 AM
• 3 pages of notes, front and back
• comprehensive
• like the midterm, but 4 questions instead of 3

• Do not miss the final!
• Any accommodations must go through DRC



Quiz



Quiz



Quiz



Quiz



Quiz



Quiz

Thanks!



Homework review

• Command line



Class Review



What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Analysis

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What are some examples here?

Warnings
Errors
Performance logs



Optimizations
Optimizations

Optimizations

Compiler Architecture

Front end
input 

program
machine 

code

Medium detailed view

Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

creates
structure

string

produces
executable code

https://stackoverflow.com/questions/15548023/clang-optimization-levels


Lexical 
Analysis

input 
program

machine 
code

Intermediate 
code gen

Syntactic 
Analyzer

Semantic 
Analyzer

IR 
optimizations

target code 
gen

target code 
gen

loop!

loop!

More detailed view



Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park



Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN



Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions: 

• ARTICLE          =  {The, A, My, Your}
• NOUN             =  {Dog, Car, Computer}
• VERB               =  {Ran, Crashed, Accelerated}
• ADJECTIVE      =  {Purple, Spotted, Old}

Tokens Tokens Definitions



Scanner API

What do we want?

“My Old Computer Crashed”

Scanner



Scanner API

What do we want?

“My Old Computer Crashed”

Scanner

Lexeme: (TOKEN, value) 

[(ARTICLE, “My”), (ADJECTIVE, “Old”), (NOUN, “Computer”), (VERB, “Crashed”)]



Longest possible match

Consider the token:

• CLASS_TOKEN = {“cse”, “110”, “cse110”}

What would the lexemes be for: “cse110”

options: 
• (CLASS_TOKEN, ”cse”) (CLASS_TOKEN, ”110”)
• (CLASS_TOKEN, ”cse110”)

This one!



Longest possible match

• Important for operators, e.g. in C
• ++, +=

how would we scan “x++;”

[(ID, “x”), (ADD, “+”), (ADD, “+”), (SEMI, “;”)]

[(ID, “x”), (INCREMENT, “++”), (SEMI, “;”)]



Let’s write tokens as regular expressions

• For our simple programming language

ID     = [a-z]+
NUM    = [0-9]+
ASSIGN = ”=“
PLUS   = “+”
MULT   = “*”
IGNORE = [“ “]

image source: wikipedia



Scanner implementations

• Naïve scanner:
• Pros/cons?

• Exact match scanner
• Pros/cons?

• Start of string scanner
• Pros/cons?

• Named group scanner
• Pros/cons?
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Parsing

• Use CFGs to express our grammar
• Why?

• CFGs consist of production rules and 
terminals

• production rules can be recursive

add_expr ::= NUM PLUS NUM

mult_expr ::= NUM TIMES NUM

joint_expr ::= add_expr TIMES add_expr

simple_expr ::= simple_expr PLUS NUM
| simple_expr TIMES NUM
|   NUM

Examples:



A more complicated derivation
1: Expr ::= ‘(’ Expr ‘)’
2:      |    Expr Op ID
3:      |    ID
4: Op   ::= ‘+’
5: Op   |   ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Are there other ways to derive(a+b)*c?

We can visualize this as a tree:

Expr

(ID, c)OpExpr

*
( )Expr

Op (ID, b)Expr

+(ID, a)



Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr ::= NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Two possible parse trees for the same input

Does not correctly encode precedence!



More ambiguous grammars
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <MINUS> expr

<MINUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

Which one is right?



How to avoid ambiguous grammars

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

Tokens:
NUM    = “[0-9]+”
PLUS   = ‘\+’
TIMES  = ’\*’
LP     = ‘\(’
RP     = \)’
MINUS  = ‘-’
DIV    = ‘/’
CARROT =’ \^’

Let’s do operators [+,*,-,/,^] and()



Implementing parsers



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Can we derive the string a

What could a demonic
choice do?

Expanded Rule Sentential Form

start Expr

Variable Value

focus

to_match

s.istring

stack

1: Expr  ::= Expr ‘+’ ID
2:       |   ID



Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
|   B

Fee  ::= B Fee2

Fee2 ::= A Fee2
|    “”

1: Expr  ::= Expr Op Unit
2:       |   Unit
3: Unit  ::= ‘(‘ Expr ‘)’
4:       |    ID
5: Op    ::= ‘+’
6:       |   ‘*’

A = Op Unit
B = Unit

1: Expr  ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       |   “”



The First+ Set

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr  ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit  ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op    ::= ‘+’
7:       |   ‘*’

Follow sets:
1: NA
2: NA
3: {None, ’)’}
4: NA
5: NA
6: NA
7: NA

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}



Do we need backtracking?

1: Expr  ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit  ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op    ::= ‘+’
7:       |   ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

These grammars are called LL(1)
• L - scanning the input left to right
• L - left derivation
• 1 - how many look ahead symbols

They are also called predictive grammars 

Many programming languages are LL(1)



Recursive descent parser



Recursive descent parser

We can just write exactly that!

How do we parse an Expr? 
We parse a Unit followed by an Expr2

1: Expr  ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit  ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op    ::= ‘+’
7:       |   ‘*’

def parse_Expr(self):
self.parse_Unit();
self.parse_Expr2();
return



Recursive descent parser
How do we parse an Expr2? 1: Expr  ::= Unit Expr2

2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit  ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op    ::= ‘+’
7:       |   ‘*’



Recursive descent parser
1: Expr  ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit  ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op    ::= ‘+’
7:       |   ‘*’

How do we parse an Expr2? 

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}



Recursive descent parser
1: Expr  ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit  ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op    ::= ‘+’
7:       |   ‘*’

How do we parse an Expr2? 

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Expr2(self):

token_id = get_token_id(self.to_match)

# Expr2 ::= Op Unit Expr2
if token_id in ["PLUS", "MULT"]:

self.parse_Op()
self.parse_Unit()
self.parse_Expr2()
return

# Expr2 ::= "" 
if token_id in [None, ”RPAR"]:

return

raise ParserException(... # observed token
["PLUS", "MULT", ”RPAR"]) # expected token



Symbol Table

int x;
{
int y;
x++;
y++;

}
y++;

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LBRAC = “{“
RBRAC = “}”
SEMI = “;”

statements are either a declaration or an increment

Consider this simple programming language:



How to implement a symbol table?

• Thoughts? What data structures are good at mapping strings?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table. 
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol 
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table



How to implement a symbol table?

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

HT 0base scope



How to implement a symbol table?

HT 0push_scope() 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

push_scope() 

adds a new 
Hash Table
to the top of the stack

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

insert(id,data) 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

insert(id,data) 

insert (id -> data) at
top hash table

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

lookup(id) 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

lookup(id) 

check here
first

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

lookup(id) then check
here

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

pop_scope() 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



Lexical 
Analysis

input 
program

machine 
code

Intermediate 
code gen

Syntactic 
Analyzer

target code 
gen

target code 
optimizations

loop!

loop!

string token stream syntax tree

IR programs

optimized IR 
program

ISA program

optimized ISA program

IR Analysis/ 
Optimization

Moving on



First IR: Abstract Syntax Tree



What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

term

<NUM, “5”>

factor <NUM, “6”>

factor

+

1

5

*

6

AST

Parse Tree

input: 1+5*6

What are some differences?



Example expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

what happens to ()s in an AST?

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

*

+

1 5

6

No need for (), they simply capture
precedence. And now we have precedence
in the AST tree structure



Evaluate an AST by doing a post order traversal

int x;
int y;
float z;
float w;
w = x + y + z

AST<x>

AST<+>

AST<y>

What if you cannot evaluate it? 
What else might you do?

AST<+>

AST<z>

How does this change things?



Evaluate an AST by doing a post order traversal

int x;
int y;
float z;
float w;
w = x + y + z

AST<x>

AST<+>

AST<y>

What if you cannot evaluate it? 
What else might you do?

AST<+>

AST<z>

How does this change things?

adding together
two ints

adding together
an int and a float

in many languages this is fine, but we are working towards assembly language 



Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction 

needs to be an x86
addss instruction 

add r0 r1 - interprets
the bits in the registers
as integers and adds them
together

addss r0 r1 - interprets
the bits in the registers
as floats and adds them
together



Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction 

needs to be an x86
addss instruction 

Is this all?

int x;
int y;
float z;
float w;
w = x + y + z

Lets do some experiments.

What should 5 + 5.0 be?



Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction 

needs to be an x86
addss instruction 

Is this all?

int x;
int y;
float z;
float w;
w = x + y + z

Lets do some experiments.

What should 5 + 5.0 be?

but 

addss r1 r2

interprets both registers
as floats



Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction 

needs to be an x86
addss instruction 

Is this all?

int x;
int y;
float z;
float w;
w = x + y + z

But the binary of 5 is 0b101
the float value of 0b101 is 7.00649232162e-45

We cannot just add them!



Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

converts the int
value to a float value

We need to make sure our operands are in the right format!

int x;
int y;
float z;
float w;
w = x + y + z

AST<int_to_float>



Type inference on an AST

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

int x;
int y;
float z;
float w;
w = x + y + z each node additionally gets a type



Type inference on an AST

AST<x, int>

AST<+>

AST<y, int>

AST<+>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z each node additionally gets a type

we can get this from the symbol table for the leaves



Type inference on an AST

AST<x, int>

AST<+,?>

AST<y, int>

AST<+>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?



Type inference on an AST

AST<x, int>

AST<+,?>

AST<y, int>

AST<+>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

combination rules for subtraction:



Type inference on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

inference rules for subtraction:



Type inference on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,?>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

inference rules for subtraction:



Type inference on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

inference rules for subtraction:



Type inference on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

inference rules for subtraction:

what else?



Type inference on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

inference rules for subtraction:

what else? need to convert the int to a float

AST<int_to_float,?>



Linearizing an AST



Converting AST into Class-IR

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

AST<int2float, float>

After type inference



Converting AST into Class-IR

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

After type inference

We will start by adding a new
member to each AST node:

A virtual register

Each node needs a distinct virtual
register



int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

What now?
We can create a 3 address 
program doing a post-order 
traversal



int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);

vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

We can create a 3 address 
program doing a post-order 
traversal

Final program
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optimizations

loop!

loop!

string token stream syntax tree

IR programs

optimized IR 
program
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optimized ISA program

IR Analysis/ 
Optimization

Once we are in intermediate representations
we can do all sorts of optimizations!

Local value numbering:
- including constant propagation and folding

- loop unrolling

- etc.

Much more in CSE 211!



Lexical 
Analysis

input 
program

machine 
code

Intermediate 
code gen

Syntactic 
Analyzer

target code 
gen

target code 
optimizations

loop!

loop!

string token stream syntax tree

IR programs

optimized IR 
program

ISA program

optimized ISA program

IR Analysis/ 
Optimization

We saw some considerations in code gen:
- Register allocation
- instruction selection

- Mapping 3 address instructions to ISA instructions



Last day of class!

• I hope after the final you take some time to reflect



Taking a class is like going on a long hike

Photos by Rocio Lopez



Scanners

Photos by Rocio Lopez



Scanners AST and type checking

Photos by Rocio Lopez



Take some time
in the summer
to enjoy the view!

Photos by Rocio Lopez

The culmination
of your homeworks
is quite big! A parser
and IR generator
for a non trivial subset
of C!



Thank you!

• This is still a new version of the class and I know there were some issues
with the assignments. Thanks for your patience and working with us!

• Even if you don’t work on compilers in your career, understanding them 
will help you write better code and understand programming languages in 
a deeper way
• And I hope you found things interesting regardless!

• Hope to keep in touch!

• Let us know if there are any issues with grades, which should be coming 
out ASAP


