
CSE110A: Compilers
June 7, 2023

Topics:
• More loop transforms

Announcements

• Homework 3 grades are out
• If you think the grade is off, come see us (or post a private piazza post)
• If you only threw the wrong exception, then fix your code (ONLY CODE DEALING

WITH THE TYPE OF EXCEPTION YOU ARE THROWING) by Friday and post on
Piazza

• HW 5 is out
• Due on Sunday
• But try to get it done by Friday so that you have time to study for the final.
• Lots of good questions on Piazza.
• Get started if you haven’t!

Announcements

• Final is on Monday (June 12) at 8 AM in this classroom.
• Comprehensive
• You can have 3 pages of notes (front and back)
• Like the midterm but 4 questions instead of 3
• Guest lecture material will not be on the final.

Quiz

Quiz

Quiz

Discussion

for (i = 0; i < 4; i++){
for (j = 0; j < 4; j++){
a[i] += b[j];

}
}

Lets think about how unrolling
the outer loop would look...

Discussion

for (i = 0; i < 4; i++){
for (j = 0; j < 4; j++){
a[i] += b[j];

}
i++;
for (j = 0; j < 4; j++){
a[i] += b[j];

}
}

Lets think about how unrolling
this loop would look...

Can’t do much now

Discussion

for (i = 0; i < 4; i+=2){
for (j = 0; j < 4; j++){
a[i] += b[j];

}
for (j = 0; j < 4; j++){
a[i+1] += b[j];

}
}

Lets think about how unrolling
this loop would look...

What about now?

Discussion

for (i = 0; i < 4; i+=2){
for (j = 0; j < 4; j++){
a[i] += b[j];
a[i+1] += b[j];

}
}

Lets think about how unrolling
this loop would look...

This is an optimization called unroll and jam:
unroll the outer loop and fuse the inner loop.

Quiz

More loop transforms

• Loop nesting order

• Loop tiling

• General area is called polyhedral compilation

https://en.wikipedia.org/wiki/Polytope_model

New constraints:

• Typically requires that loop iterations are independent
• You can do the loop iterations in any order and get the same result

for (int i = 0; i < 2; i++) {
counter += 1;

}

vs

for (int i = 0; i < 1024; i++) {
counter = i;

}

are these independent?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {
a[i] = b[i] + c[i];

}

for (int i = SIZE-1; i >= 0; i--) {
a[i] += a[i+1]

}

are they the same if you traverse them backwards?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {
a[i] = b[i] + c[i];

}

for (int i = SIZE-1; i >= 0; i--) {
a[i] += a[i+1]

}

are they the same if you traverse them backwards?

No!

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (pick i randomly) {
a[i] = b[i] + c[i];

}

for (pick i randomly) {
a[i] += a[i+1]

}

what about a random order?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (pick i randomly) {
a[i] = b[i] + c[i];

}

for (pick i randomly) {
a[i] += a[i+1]

}

what about a random order?

No!

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results
• If a compiler can find a DOALL loop then there are lots of optimizations

to apply!

Safety Criteria: independent iterations

• How do we check this?
• If the property doesn’t hold then there exists 2 iterations, such that if they are

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria: independent iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria: independent iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria: independent iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable
Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria: independent iterations

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy)

Safety Criteria: independent iterations

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy)

Why?
Because if
index(ix) == index(iy)
then:
a[index(ix)] will equal
either loop(ix) or loop(iy)
depending on the order

Safety Criteria: independent iterations

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Safety Criteria: independent iterations

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Why?

if ix iteration happens first, then
iteration iy reads an updated value.

if iy happens first, then it reads the
original value

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

DOALL loops

• Very difficult for a compiler to prove
• Although a decent amount of academic work, very little is done in actual

compilers

• However, some domains naturally have DOALL loops?
• Examples?

• People make ”Domain Specific Languages” that target only certain
applications. Then you can provide more constrains and optimize
more aggressively.

Motivation: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

Image processing

Taken from Halide:
A DSL project out of MIT

Motivation: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

Image processing

Taken from Halide:
A DSL project out of MIT

DSL provides two languages: one
for the computation, and one for the
optimizations and orders

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

you can compute the pixels in any order you want, you just have to compute all of them!

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

you can compute the pixels in any order you want, you just have to compute all of them!

for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {

output[y,x] = x + y;
}

}
What is the difference
here? What will the difference be?

Demo

• Why do we see the performance difference?

Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶

Demo

Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶

Demo

Cache miss for all of them

Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶

Demo

Cache HIT for all of them

Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶

Demo

Cache HIT for all of them

Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶

Demo

Cache miss for all of themRewind!

Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶

Demo

Cache miss for all of themRewind!

Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶

Demo

Cache miss for all of themRewind!

But sometimes there isn’t a good ordering

transposed arrays

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

transposed arrays

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

transposed arrays

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

transposed arrays

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

What happens here?

• Demo

How can we fix it?

• Can we use the compiler?

• Does loop order matter?

Loop transformations

• We can change loop order

• What else?

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 4; x_outer+=2) {

for (int x = x_outer; x < x_outer+2; x++) {
output[y,x] = x + y;

}
}

}

Loop splitting:

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

What is the difference here?

Does loop splitting by itself work?

• Lets try it
• demo

We can chain optimizations

• Lets try chaining loop splitting and reorder
• Demo

We can chain optimizations

• Lets try chaining loop splitting and reorder
• Demo

• What happened?!

Our new schedule looks like this:

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Why is this beneficial?

blocking

blocking

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

blocking

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

blocking

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

blocking

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on C

blocking

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C

blocking

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!

Other uses of loop split

• Say your processor can vectorize 4 elements at a time

for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 8; x_outer+=4) {

for (int x = x_outer; x < x_outer+4; x++) {
output[y,x] = x + y;

}
}

}

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 8; x++) {

output[y,x] = x + y;
}

}

Other uses of loop split

for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 8; x_outer+=4) {

for (int x = x_outer; x < x_outer+4; x++) {
output[y,x] = x + y;

}
}

}

specify vectorize

Loop transformation summary
• If the compiler can prove different properties about your loops, you can

automatically make code go a lot faster

• It is hard in languages like C/C++. But in constrained languages (often called
domain specific languages (DSLs) it is easier!
• Hot topic right now for Machine learning, graphics, graph analytics, etc!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Homework

See everyone on Friday!

• Class review for final

