
CSE110A: Compilers
June 2, 2023

Topics: 
• Finish local value numbering
• Loop transformations



Announcements

• HW 5 is out
• Get started early
• I don’t expect you to work over the weekend, but I am giving you the time

• Grading
• HW 2 grades are out, let us know if there are any issues
• HW 3 grades should be coming soon

• Final:
• June 12th at 8 AM
• Like the midterm, but with 4 questions (comprehensive ) 
• 3 pages of notes



Announcements

• Next Wednesday, guest lecture by teaching staff
• Neal will talk about register allocation
• Rithik will talk about LLVM

• Not enough time to cover many optimizations or backends L
• Book is a good reference
• CSE 211 will go over more types of analysis. Message me if you are interested



No quiz

• Thanks for filling out SETs!



Finishing up local value numbering

• How to stitch optimized code back into the whole program



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

split into basic blocks



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

number



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

move code on slide to make room



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;



How to stitch optimized code back into the 
program

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;

What are the issues?

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original code



How to stitch optimized code back into the 
program

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;

What are the issues?
undefined!

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original code



How to stitch optimized code back into the 
program

stitch 
part 1: assign original 
variables their latest values

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

make room on slide

what else needs to be done?



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

stitch part 2: drop numbers from first use of variables

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

Now they can be combined

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;



How to stitch optimized code back into the 
program

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original

new is it really optimized?

It looks a lot longer...



How to stitch optimized code back into the 
program

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original

new is it really optimized?

Common pattern for code to get
larger, but it will contain patterns
that are easier optimize away

later passes will minimize copies



New material

• Loop transformations



Loop optimizations

• Regional optimization
• We can handle multiple basic blocks
• but only if they fit a certain pattern



For loops

• How do they look in different languages
• C/C++
• Python
• Numpy

• The more constrained the for loops are, the more assumptions the 
compiler can make, but less flexibility for the programmer



For loops

• The compiler can optimize For loops if they fit a certain pattern

• When developing a regional optimization, we start with strict 
constraints and then slowly relax them and make the optimization 
more general.
• Sometimes it is not worth relaxing the constraints (optimization gets too 

complicated. Its not the compilers job to catch every pattern!)
• If a programmer knows the pattern, then often you can write code such that 

the compiler can recognize the pattern and it will do better at optimizing!
• Thus you can write more efficient code if you write it in such a way that the 

compiler can recognize patterns



For loops terminology

• Loop body:
• A series of statements that are executed each loop iteration

• Loop condition: 
• the condition that decides whether the loop body is executed

• Iteration variable:
• A variable that is updated exactly once during the loop
• The loop condition depends on the iteration variable 
• The loop condition is only updated through the iteration variable



Examples
for (int i = 0; i < 1024; i++) {

counter += 1;
}

iteration variable
loop body
loop condition

for (; i < 1024; i+=counter) {
counter += 1;

}

while (1) {
i++;
counter += 1;
if (i < 1024) {

break;
}

}

In general, is it possible to determine if an iteration
variable exists or not?



Examples

for (i = 0; i < 1024; i++) {
counter += 1;
foo();

}

What about these?

for (i = 0; i < j; i++) {
counter += 1;
j = rand();

}



Loop unrolling



Loop unrolling

• Executing multiple instances of the loop body without checking the 
loop condition.

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

for (int i = 0; i < 128; i++) {
// body
i++
// body

}

unrolled by a factor of 2

could we unroll more?



Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

What can go wrong?

for (int i = 0; i < 128; i++) {
// body
i++
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a literal 

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Do these guarantee we will find an iteration variable?
What happens if we don’t find one?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a literal 



Loop unrolling conditions

• Several ways to unroll
• More constraints: Simpler to unroll in code generation
• Less constraints: Harder to unroll in code generation

Base constraints (required for any unrolling):

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a literal 



Loop unrolling conditions

• Simple unroll
• Most constraints
• Easiest code generation Simple unroll constraints:

• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

how to do these
steps?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

for (int i = 0; i < 128; i++) {
// body
i++
// body

}

result for a factor of 2



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 8; i+=3) {
// body

}

what can go wrong?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 8; i+=3) {
// body

}

what can go wrong?

Actually this is fine as long as i is updated with
a constant addition. but we need a more
complicated formula to calculate LI:

ceil((end - start)/update)

But you may want to keep your life simpler
by constraining it. We will keep it for now



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 4; i++) {
// body

}

what can go wrong?

What if we try to 
unroll this by a 
factor of 3?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 4; i++) {
// body

}

what can go wrong?

What if we try to 
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute 
body?



Loop unrolling conditions

for (int i = 0; i < 4; i++) {
// body

}
What if we try to 
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute 
body?

Let’s examine this a bit closer?



Loop unrolling conditions

for (int i = 0; i < 4; i++) {
// body

}
What if we try to 
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute 
body?

Let’s examine this a bit closer?

for (int i = ?; i < ?; i++) {
// body
i++
// body
i++
// body

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop



Loop unrolling conditions

for (int i = ?; i < ?; i++) {
// body
i++
// body
i++
// body

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop

initially the loop starts the same as the original loop

for (int i = 0; i < 4; i++) {
// body

}

find out how many unrolled loops we can execute:
(4 / 3) * 3 = 3
This gives us the first bound

second loop is initialized with the first bound

second loop’s bound is same as the original loop 



Loop unrolling conditions

for (int i = ?; i < ?; i++) {
// body
i++
...

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop

What about in the general case? For unroll factor F?

for (int i = x; i < y; i++) {
// body

}

find out how many unrolled loops we can execute:
?
This gives us the first bound

second loop is initialized with the first bound

second loop’s bound is same as the original loop 



Loop unrolling conditions

• general unroll

General unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI

General unroll code generation:
• Create simple unrolled loop with new bound: (LI/F)*F
• Create cleanup (basic) loop with initialization: (LI/F)*F
• perform codegen

For unroll factor F

None of these numbers have to be concrete!



More loop transforms

• Loop nesting order

• Loop tiling

• General area is called polyhedral compilation

https://en.wikipedia.org/wiki/Polytope_model



New constraints:

• Typically requires that loop iterations are independent
• You can do the loop iterations in any order and get the same result

for (int i = 0; i < 2; i++) {
counter += 1;

}

vs

for (int i = 0; i < 1024; i++) {
counter = i;

}

are these independent?



Motivation: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

Image processing



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

you can compute the pixels in any order you want, you just have to compute all of them! 



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

you can compute the pixels in any order you want, you just have to compute all of them! 

for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {

output[y,x] = x + y;
}

}
What is the difference
here? What will the difference be?



Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶



Demo

• Why do we see the performance difference?



But sometimes there isn’t a good ordering



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C



What happens here?

• Demo



How can we fix it? 

• Can we use the compiler?



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 4; x_outer+=2) {

for (int x = x_outer; x < x_outer+2; x++) {
output[y,x] = x + y;

}
}

}

Loop splitting:

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

What is the difference here?



Does loop splitting by itself work?

• Lets try it
• demo



We can chain optimizations

• Lets try chaining loop splitting and reorder
• Demo



We can chain optimizations

• Lets try chaining loop splitting and reorder
• Demo

• What happened?!



Our new schedule looks like this:

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Why is this beneficial?



blocking



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on C



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!



See everyone on Monday

• More loop transformations


