
CSE110A: Compilers
April 5, 2023

• Compiler Overview
• What is a compiler
• What are the different stages of a compiler

• Frontend
• Intermediate
• Backend

Announcements

• Friday will be an asynchronous lecture (recorded from last year)

• Homework 1 will be released either Monday or Tuesday

• Piazza is up; please enroll!

• Coming soon:
• Docker setup instructions on the website
• TA and tutor office hours

Announcements

• Did anyone set up a discord?

Quiz

Background

Background

It is worthwhile to learn!

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

What do people hope to get out of this class?

A few answers that I liked:

• “I hope to understand how the compiler works rather than simply accept
that it does”

• ”learning how my code is translated will make me a better programmer”

• ”I’m interested in learning more about docker and python and computer
science in general”

• “I want to learn about AI compilers”

Quiz

• Thank you for all your thoughtful answers!

Schedule

• Introduction to compilers

• Compiler architecture

Schedule

• Introduction to compilers

• Compiler architecture

What is a compiler?

Let’s discuss

What are some of your favorite compilers

Let’s discuss

Building this website started with:
• Markdown to describe the page
• compiled with Jekyll to a static webpage
• static webpage is in HTML and javascript

What is a compiler?

CompilerInput Output

What is a compiler?

CompilerInput Output

This is way too general to be useful
Any program fits this description.

What is a compiler?

CompilerInput Output

Strings belonging to
language L

Strings belonging to
language L’

A theoretical answer

Building this website started with:
• Markdown to describe the page
• compiled with Jekyll to a static webpage
• static webpage is in HTML and javascript

This would be a compiler

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Strings belonging to
language L

A more traditional description
What are some examples here?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A program written in C An x86 Binary executable

Strings belonging to
language L

A classic example

gcc/clang

GCC and Clang

• Two mainstream compiler frameworks

• Similarities and differences?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

int main() {
printf("hello world\n");

}
gcc main.c

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

int main() {
printf("hello world\n");

}

$./a.out
hello CSE 110A

gcc main.c

What is wrong with this picture?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A valid input must have a equivalent valid output.
Semantic equivalence

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

int main() {
printf("hello world\n");

}

$./a.out
hello CSE 110A

gcc main.c

What is wrong with this picture?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

int main() {
printf("hello world\n");

}

$./a.out
hello world

gcc main.c

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What else does a compiler give you?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Analysis

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What are some examples here?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Analysis

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What are some examples here?

Warnings
Errors
Performance logs

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Analysis

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What are some examples here?

Warnings
Errors
Performance logs

Demo

• What are some examples of code that might give a warning?

What can happen when the Input isn’t valid?

int foo() {
int x;
int y = x;
return y;

}

Try running this through the compiler

What can happen when the Input isn’t valid?

Try running this through the compiler

int foo() {
int x;
int y = x;
return y;

}

int foo(int condition) {
int x;
if (condition) {
x = 5;

}
int y = x;
return y;

}

What about this one?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A valid input must have a equivalent valid output.
Semantic equivalence

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

Uninitialized variable example

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Analysis

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What are some examples here?

Warnings
Errors
Performance logs

What can happen when the Input isn’t valid?

Try running this through a compiler

int foo() {
int my_var = 5;
my_var = my_car + 5;
return my_var

}

What can happen when the Input isn’t valid?

Try running this through a compiler

int foo() {
int my_var = 5;
my_var = my_car + 5;
return my_var

}

You get an error and a suggestion these days

What can happen when the Input isn’t valid?

What about this one? No error...

int foo() {
int *x = malloc(100*sizeof(int));
return x[100];

}

What sort of errors are compilers good at catching?
What ones are they not?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Analysis

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

What are some examples here?

Warnings
Errors
Performance logs

How can we know what the compiler is
doing?

#define SIZE (1024*1024)
int add(int * a, int * b, int * c) {

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}
return 0;

}
Use the compiler flags
-Rpass-missed=loop-vectorize
-Rpass=loop-vectorize

Does the compiler need to perform every
step?

int foo() {
int my_var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}
return my_var;

}

Does the compiler need to perform every
step?

int foo() {
int my_var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}
return my_var;

}

Mentally we probably step through the for loop:

Does the compiler need to perform every
step?

int foo() {
int my_var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}
return my_var;

}

Mentally we probably step through the for loop:

What does the compiler do?

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A valid input must have a equivalent valid output.
Semantic equivalence

Strings belonging to
language L

gcc/clangA program written in C An x86 Binary executable

Does the compiler need to perform every
step?

int foo() {
int my_var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}
return my_var;

}

int foo() {
return 128;

}

are these the same?

Does the compiler need to perform every
step?

int foo() {
int my_var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}
return my_var;

}

Functionally - they are the same
Non-functionally - they are not

int foo() {
return 128;

}

are these the same?

Most compilers are concerned only with functional equivalence

Schedule

• Introduction to compilers

• Compiler architecture

Compiler Architecture

Compiler Architecture

Compilerinput program machine code

Compilers are complicated and this image is too simple

Compiler Architecture

Front end
input

program
machine

code

Medium detailed view

Back
endOptimizations

compiler

Optimizations
Optimizations

Optimizations

Compiler Architecture

Front end
input

program
machine

code

Medium detailed view

Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

creates
structure

string

produces
executable code

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Optimizations
Optimizations

Optimizations

Compiler Architecture

Front end
input

program
machine

code

Medium detailed view

Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

creates
structure

string

produces
executable code

What are some of the
benefits of this design?

What are some of the drawbacks
of this design?

https://stackoverflow.com/questions/15548023/clang-optimization-levels

LLVM compiler infastructure example

• Front ends:
• clang - c
• clang++ - c++
• Many others (rust, etc.)

• intermediate representation:
• LLVM byte code

• backends
• X86
• ARM
• M1
• RISC-V

More detailed compiler view

• Can’t fit it nicely on one slide!

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

More detailed view

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

More detailed view

Front end

Back end

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

More detailed view

Front end

Back end

Why two passes of optimizations?

architecture aware optimizations

• Example

int foo(int *x, int *y, int *z) {
for (int i = 0; i < 128; i++) {
z[i] = y[i] + x[i];

}
return 0;

}

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

More detailed view

string token stream syntax tree syntax tree

IR program

optimized IR
program

ISA program

optimized ISA program

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

More detailed view

string token stream syntax tree syntax tree

IR program

optimized IR
program

ISA program

optimized ISA program

position = initial + rate * 60;

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

optimized ISA program

position = initial + rate * 60;

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

id name info

1 position float

2 initial float

3 rate float

Symbol table

Token stream

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

=

<id,1>

<id,2>

<id,3> 60

+

*

Syntax tree

position = initial + rate * 60;

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

=

<id,1>

<id,2>

<id,3> 60

+

*

Syntax tree

position = initial + rate * 60;

Can we multiply a
float by an integer?

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

=

<id,1>

<id,2>

<id,3>

60

+

*

Syntax tree

position = initial + rate * 60;

int_to_float

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

token stream syntax tree syntax tree

IR program

optimized IR
program

=

<id,1>

<id,2>

<id,3>

60

+

*

Syntax tree

position = initial + rate * 60;

int_to_float

%r0 = int_to_float(60);
%r1 = %r0 * id3;
%r2 = %r1 + id2;
%id1 = %r2;

IR program

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

token stream syntax tree syntax tree

IR program

optimized IR
program

position = initial + rate * 60;

%r0 = int_to_float(60);
%r1 = %r0 * id3;
%r2 = %r1 + id2;
%id1 = %r2;

IR program

Optimized IR program

%r1 = 60.0 * id3;
id1 = %r1 + id2;

ISA program

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

token stream syntax tree syntax tree

IR program

optimized IR
program

position = initial + rate * 60;

Optimized IR program

%r1 = 60.0 * id3;
id1 = %r1 + id2;

ISA program

ISA program

mul.s $f0, 60.0, $id3
add.s $f1, $f0, $id2 (some pseudo code)

target code
optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

token stream syntax tree syntax tree

IR program

optimized IR
program

position = initial + rate * 60;

ISA program

ISA program

mul.s $f0, 60.0, $id3
add.s $f1, $f0, $id2

optimized ISA program

ISA program

madd.s $f1, 60.0, $id3, $id2

(some pseudo code)

some architectures have fused
multiply and add instructions

target code
optimizations

Compiler Architecture

Compilerinput program machine code

Now you’ve seen a journey through a compiler!

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

optimized ISA program

position = initial + rate * 60;

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

id name info

1 position float

2 initial float

3 rate float

Symbol table

Token stream

First module

target code
optimizations

Next Class

• Lexical Analysis

