CSE110A: Compilers

April 5, 2023

 Compiler Overview

 What is a compiler
* What are the different stages of a compiler
* Frontend

* |ntermediate
 Backend

Announcements

* Friday will be an asynchronous lecture (recorded from last year)
* Homework 1 will be released either Monday or Tuesday
* Piazza is up; please enroll!

* Coming soon:
* Docker setup instructions on the website
* TA and tutor office hours

Announcements

* Did anyone set up a discord?

Background

So | can get a better sense of the backgrounds in this class, please select all

the classes you have taken:

CSE 103
CSE 120
CSE 130

No Answer

11 respondents
45 respondents
29 respondents

7 respondents

791
90 %
58 %
14 %

M

2% answered correctly

Background

Have you ever programmed in Python before?

Yes, a lot 41 respondents
Yes, a little 16 respondents
No

It is worthwhile to learn!

https://www.tiobe.com/tiobe-index/

72 %
28 %
O%

Discrimination Index

®

72% answered
correctly

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

What do people hope to get out of this class?

A few answers that | liked:

* “I hope to understand how the compiler works rather than simply accept
that it does”

* “learning how my code is translated will make me a better programmer”

* “I'm interested in learning more about docker and python and computer
science in general”

* “| want to learn about Al compilers”

Quiz

* Thank you for all your thoughtful answers!

Schedule

* Introduction to compilers

* Compiler architecture

Schedule

* Introduction to compilers

* Compiler architecture

What is a compiler?

Let’s discuss

What are some of your favorite compilers

Let’s discuss

title: "Fundamentals of Compiler Design"
layout: single

Welcome to **CSE110A:xx _Fundamentals of Compiler Design_, Spring 2022 Quarter at UCSC!

©O~NOU A WN R

- skInstructor:xx [Tyler Sorensen] (https://users.soe.ucsc.edu/~tsorensen/)

10 - xxTime:** Mondays, Wednesdays and Fridays: 4:00 - 5:05 pm

11 - sxxLocation:xx Porter 144

12

13 Hello and welcome to the fundamentals of compiler design class!

14

15 In this class you will learn about compiler design and implementation. In the abstract, compilers explore many of the [foundational problems in computer
science] (https://en.wikipedia.org/wiki/Halting_problem). In practice, compilers are [massive pieces of well-oiled software]
(https://www.phoronix.com/scan.php?page=news_item&px=MTg30TQ), and are some of the engineering marvels of the modern world.

16

17 _COVID Note_ : The last few years have been difficult due to the COVID pandemic. Public health concerns and policies remain volatile. The first priority in

this class in your health and well-being. We will approach any challenges that arise with compassion and understanding. I expect that you will do the same,
both to the teaching staff and to your classmates. We will follow university guidelines and work together to have a productive and fun quarter.

18

Home Overview Schedule References

Fundamentals of Compiler Design

Building this website started with:
Welcome to CSE110A: Fundamentals of Compiler e Markdown to describe the page
Design, Spring 2023 Quarter at UCSC! ¢ . . .
| * compiled with Jekyll to a static webpage
¢ Instructor: Tyler Sorensen
« Time: Mondays, Wednesdays and Fridays: 9:20 - 10:25 AM » static webpage is in HTML and javascript

¢ Location: Merrill Acad 102

Hello and welcome to the fundamentals of compiler design class!

In this class you will learn about compiler design and
— ian_In the Al i | ”

What is a compiler?

Input g

Compiler) Output

What is a compiler?

Input g

Compiler g Output

This is way too general to be useful
Any program fits this description.

What is a compiler?

Input g Compiler) Output
Strings belonging to Strings belonging to
language L language I

A theoretical answer

title: "Fundamentals of Compiler Design"
layout: single

Welcome to **CSE110A:xx _Fundamentals of Compiler Design_, Spring 2022 Quarter at UCSC!

O oo NOOUL B WN R

— sxInstructor:xx [Tyler Sorensen](https://users.soe.ucsc.edu/~tsorensen/)

10 - xxTime:*x Mondays, Wednesdays and Fridays: 4:00 — 5:05 pm

11 - =xxLocation:sx Porter 144

12

13 Hello and welcome to the fundamentals of compiler design class!

14

15 In this class you will learn about compiler design and implementation. In the abstract, compilers explore many of the [foundational problems in computer
science] (https://en.wikipedia.org/wiki/Halting_problem). In practice, compilers are [massive pieces of well-oiled software]
(https://www.phoronix.com/scan.php?page=news_item&px=MTg30TQ), and are some of the engineering marvels of the modern world.

16

17 _COVID Note_ : The last few years have been difficult due to the COVID pandemic. Public health concerns and policies remain volatile. The first priority in
this class in your health and well-being. We will approach any challenges that arise with compassion and understanding. I expect that you will do the same,
both to the teaching staff and to your classmates. We will follow university guidelines and work together to have a productive and fun quarter.

12

Home Overview Schedule References

Fundamentals of Compiler Design

Building this website started with:
Welcome to CSE110A: Fundamentals of Compiler i Mal"kdOWﬂ to describe the page
Design, Spring 2023 Quarter at UCSC! & . . .
| * compiled with Jekyll to a static webpage
¢ Instructor: Tyler Sorensen
o Time: Mondays, Wednesdays and Fridays: 9:20 - 10:25 AM . Stat|c Webpage |S |n HTML and javaSCFIpt
o Location: Merrill Acad 102

Hello and welcome to the fundamentals of compiler design class!

This would be a compiler

In this class you will learn about compiler design and

imnlamantatinn_In tha ahectract ~Aoamnilarc avnlara manv nf tha

What is a compiler?

A more traditional description
What are some examples here?

Input g

Compiler) Output

Strings belonging to Strings belonging to
language L language U
A series of statements in An executable binary file

programming language L in an ISA language

What is a compiler?

A classic example

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

GCC and Clang

* Two mainstream compiler frameworks

e Similarities and differences?

What is a compiler?

int main() {
printf("hello world\n");

+
gcc main.c
Input g Compiler) Output
Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What is a compiler?

int main() {
printf("hello world\n");
I3

gcc main.c

Input g

Compiler

Strings belonging to
language L

A series of statements in
programming language L

A program written in C gcc/clang

)

What is wrong with this picture?

$./a.out
hello CSE 110A

Output

Strings belonging to
language I

An executable binary file
in an ISA language

An x86 Binary executable

What is a compiler?

A valid input must have a equivalent valid output.
Semantic equivalence

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What is a compiler?

int main() {
printf("hello world\n");
I3

gcc main.c

Input g

Compiler

Strings belonging to
language L

A series of statements in
programming language L

A program written in C gcc/clang

)

What is wrong with this picture?

$./a.out
hello CSE 110A

Output

Strings belonging to
language I

An executable binary file
in an ISA language

An x86 Binary executable

What is a compiler?

int main() { $./a.out
printf("hello world\n"); hello world

}

gcc main.c

Input g

Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What is a compiler?

Input g

Strings belonging to
language L

A series of statements in
programming language L

A program written in C

Compiler

gcc/clang

What else does a compiler give you?

”
g Output

Strings belonging to
language I

An executable binary file
in an ISA language

An x86 Binary executable

What IS G COm,U//EI'p What are some examples here?

Analysis

”

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

Demo

* What are some examples of code that might give a warning?

What can happen when the Input isn’t valid?

int foo() {
int Xx;
int y = X;
return y;

¥

Try running this through the compiler

What can happen when the Input isn’t valid?

: int foo(int condition) {
int -FOO() { int x;

int Xx; if (condition) {

. X = 5;

int y = X; }

return y; izzu¥n=y{<;
¥)

What about this one?

Try running this through the compiler

What is a compiler?

A valid input must have a equivalent valid output.
Semantic equivalence

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

Uninitialized variable example

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What can happen when the Input isn’t valid?

int foo() {
int my_var = 5;
my_var = my_car + 5;
return my_var

¥

Try running this through a compiler

What can happen when the Input isn’t valid?

int foo() {
int my_var = 5;
my_var = my_car + 5;
return my_var

¥

Try running this through a compiler

You get an error and a suggestion these days

What can happen when the Input isn’t valid?

int foo() {
int *x = malloc(100*sizeof(int));
return x[100];

¥

What about this one? No error...

What sort of errors are compilers good at catching?
What ones are they not?

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

How can we know what the compiler is
doing?

#tdefine SIZE (1024*1024)
int add(int * a, int * b, int * ¢) {
for (int 1 = ©0; 1 < SIZE; i++) {
a[i] = b[1] + c[1i];
}

return 9;

}
Use the compiler flags

-Rpass-missed=loop-vectorize
-Rpass=loop-vectorize

Does the compiler need to perform every
step?

int foo() {
int my var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}

return my_var,

}

Does the compiler need to perform every
step?

int foo() {
int my var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}

return my_var,

}

Mentally we probably step through the for loop:

Does the compiler need to perform every
step?

int foo() {
int my var
for (int 1
my_var++;

}

return my_var,

}

9;
9; 1 < 128; i++) {

Mentally we probably step through the for loop:

What does the compiler do?

What is a compiler?

A valid input must have a equivalent valid output.
Semantic equivalence

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

Does the compiler need to perform every

int foo() {
int my var = 0; int foo() {
for (int i = 0; i < 128; i++) { return 128;
my_var++; }
}
return my_var;
}

are these the same?

Does the compiler need to perform every
step?

int foo() {
int my var = 0; int foo() {
for (int i = 0; i < 128; i++) { return 128;
my_var++; }
}
return my_var;

are these the same?

Functionally - they are the same
Non-functionally - they are not

Most compilers are concerned only with functional equivalence

Schedule

* Introduction to compilers

* Compiler architecture

Compiler Architecture

Compiler Architecture

input program = =P Compiler =) machine code

Compilers are complicated and this image is too simple

Compiler Architecture

input
program

-

_

compiler

~

‘ Front end ‘ Optimizations ‘ ‘

/

Medium detailed view

machine
code

Compiler Architecture

input
program

string

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

-

creates
structure

‘ Front end ‘

parsing

.

compiler

Optimizations

—

optimizations

produces
executable code

Back

end

code gen

=)

build on each other

/

Medium detailed view

machine
code

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Compiler Architecture

What are some of the
benefits of this design?

What are some of the drawbacks

of this design?
/ compiler
creates produces
structure executable code

input
orogram ‘ Front end ‘ Optimizations
string parsing

—

optimizations

Back

end

code gen

=)

machine
code

.

build on each other

/

Medium detailed view

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

https://stackoverflow.com/questions/15548023/clang-optimization-levels

LLVM compiler infastructure example

* Front ends:
* clang - c
e clang++ - c++
* Many others (rust, etc.)

* intermediate representation:
* LLVM byte code

* backends
» X86
 ARM
M1
 RISC-V

More detailed compiler view

e Can’t fit it nicely on one slide!

input
program

=)

Lexical
Analysis

Syntactic Semantic
Analyzer Analyzer

More detailed view

Intermediate IR
code gen optimizations

target code
gen

target code
optimizations

machine
code

loop!

loop!

input
program

Lexical

Analysis

Intermediate IR
code gen optimizations

Syntactic Semantic

loop!
Analyzer Analyzer P

Front end target code
gen

Back end

target code

R loop/
optimizations P

machine
More detailed view code

input
program

Semantic

Lexical Syntactic

Analysis Analyzer

Analyzer

Intermediate
code gen

IR
optimizations

loop!

Front end

Why two passes of optimizations?

More detailed view

Back end

target code
gen

target code
optimizations

loop

machine
code

architecture aware optimizations

* Example

int foo(int *x, int *y, int *z) {
for (int i = 0; i < 128; i++) {
z[1] = y[i] + x[1i];
}

return 0;

}

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
target code
gen
ISA program
target code loop!

optimizations

optimized ISA program _
machine

More detailed view code

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
: optimized IR
string token stream syntax tree syntax tree program
. . .. target code
position = initial + rate * 60; gen
ISA program
target code loop!

optimizations

optimized ISA program _
machine

More detailed view code

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:

. optimized IR
St”ng token stream SyntaX tree Syntax tree program
position = initial + rate * 60; targg;::ode
Token stream
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

target code loop!]
id name info optimizations p:
1 position float
2 initial float
3 rate float optimized ISA program _

machine

Symbol table code

position = initial + rate * 60;

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:

. optimized IR
string token stream syntax tree syntax tree program
Token stream target code
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;> gen

Syntax tree

/ \ target code Ioop!
: + optimizations p:
<ld, 1> / \
<id, 2> / *

I

<id, 3> 60

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
Token stream target code

gen

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

Syntax tree

/ \ target code Ioop!
<id. 1> + optimizations p:
! 7 T Can we multiply a

<id, 2> / * float by an integer?

<id, 3> 60

machine
code

position = initial + rate * 60;

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations '

. optimized IR
string token stream syntax tree syntax tree program
Token stream target code
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;> gen

Syntax tree

/ \ target code Ioop!
<id. 1> P + — optimizations p:
4
<id, 2> / *

T

: int_to_float
<id, 3> ‘

machine
60 code

position = initial + rate * 60;

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
optimized IR
token stream SyntaX tree Syntax tree program
Syntax tree
= target code
<id, 1> ///+~\\\\\\
<id, 2> * ~_
_ / int_to_float
<id, 3> target code
R loop!
optimizations
60

IR program

$r0 = int to float(60);

$rl = %$r0 * id3: .
' machin
¢rl + id2; ac €

3r2;

o® oo
P R
o, N
|_l

Il
Il

code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!]

program Analysis Analyzer Analyzer code gen optimizations p:
optimized IR
token stream SyntaX tree Syntax tree program

IR program
%r0 = int to float(60); targe;t]:ode
¢rl = %r0 * id3; 5
¢r2 = %rl + id2;
$idl = $r2; ISA program

o target code
Optimized IR program loop!

optimizations

srl = 60.0 * id3;
idl = %rl + id2;

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!

program Analysis Analyzer Analyzer code gen optimizations p:
optimized IR
token stream syntax tree syntax tree program
Optimized IR program
target code
srl = 60.0 * id3; sen
idl = %rl + id2;
ISA program

ISA program target code loop!

optimizations

mul.s $f0, 60.0, $id3
add.s S$f1, $f0, $id2 (some pseudo code)

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!]
program Analysis Analyzer Analyzer code gen optimizations p:
optimized IR
token stream syntax tree syntax tree program
ISA
>A program target code
mul.s $f0, 60.0, $id3 sen
add.s $f1, $f0, $id2 (some pseudo code)
ISA program
ISA program target code loop!
optimizations

madd.s S$fl1, 60.0, $id3, $id2

some architectures have fused

multiply and add instructions optimized ISA program

machine
code

Compiler Architecture

input program = =P Compiler =) machine code

Now you’ve seen a journey through a compiler!

First module

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!

program Analysis Analyzer Analyzer code gen optimizations '
. optimized IR
St”ng token stream SyntaX tree Syntax tree program
L . . r

position = 1nitial + rate * 60; ta gg;::ode

Token stream

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

target code loop!]

id name info optimizations P!

1 position float

2 initial float

3 rate float optimized ISA program

machine
Symbol table code

Next Class

* Lexical Analysis

