C .
SEllCOA. F.undamenta\s of
ompiler Design

April 3, 2023

Compilers
principles: Techniques: & Tools
N\n\u\ pditon
<
- <t / ter,
xternal compiler error Srps <te ms
s rms 7 <
- e
< X,
Error compiling program- <fa / < £ Cto Pr>
CS0234: The type or namespace name 'Setimage’ Cto r La t r>
Clipboard" (areyoy rmissing an > Or> o
TS te
<Co ng / < (" Tms
C, e
t> On S >Xpl‘_} "
)

essage: error
exist in the nd
erence?)

Line number:
Line: KeyDownLauncher.Newl(ObjLaun

mespace

cher.Va\ue,"KeyDown“)

Aho
Lam
hi

“ Alfred V-
B Monica S. L
Ravi Set

yliman

jeffrey D-

COMPILER INFRASTRUCTURE

Hello!

* Professor Tyler Sorensen (he/him)
* You can call me Tyler

* Faculty at UC Santa Cruz Since Summer 2020
e Second time teaching this class

* Previously
e Post doc at Princeton
* PhD Student at Imperial College London
e BS/MS at University of Utah

https://users.soe.ucsc.edu/~tsorensen/

https://users.soe.ucsc.edu/~tsorensen/

https://traveleering.com/
https://wikipedia.com
https://Princeton.edu

Research Interests

MS: Utah PhD: London Post Doc: Princeton

Bugs in GPU compilers and GPU synchronizations, including Compilers targeting new
programming languages a DSL for graph analytics on GPUs architectures

[RN AN

DECADES == DECADES | DECADES == DECADES
Accelerator Core Accelerator Core

Tile Tile Tile Tile
B | |
: | e ——)
Compl e DECADES DECADES [§5| DECADES DECADES
= Core Intelligent Intelligent elerator
Tile Storage Storage e
DECADES DECADES [§5| DECADES
Accelerator telligent Intelligent
Tile e Storage
DECADES DECADES [T} DECADES ~.DECADES
Core Accelerator Core Accelerator
Tile Tile Tile Tile
‘ | n L
k/" *

Research Interests

Faculty at UCSC

individual Contributor to parallel particle simulations GPU memory model testing
"'; GROUFP

(Vu likan.

Research Interests

* Compilers!
» Especially targeting new architectures (like GPUs)
* Especially targeting difficult application domains (like graphs and simulations)

Today’s class

* Class syllabus (I apologize in advance for the text slides)

* High-level discussion on compilers

Description

In this class you will learn about compiler design and implementation.
In the abstract, compilers explore many of the foundational problems
in computer science. In practice, compilers are massive pieces of well-
oiled software, and are some of the engineering marvels of the modern

world.

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Halting_problem
https://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ
https://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ

Description

* We will explore how compiler techniques

* transform high level languages into low-level languages, i.e. closer to the
instructions that processors can actually execute.

» automatically make code more efficient and safe to execute.

* When you leave this class you should be comfortable with:
* specifying programming language grammars,
* how to efficiently parse these languages,

* and how to convert complex high-level code into equivalent (and hopefully
more performant) low-level code.

course resources

e Public course website:
https://sorensenucsc.github.io/CSE110A-sp2023/index.html

e Schedule, slides, syllabus, additional resources

* Private course website: Canvas
e grades, announcements, SETs, homeworks, tests, zoom links (if needed)

* Docker Image
e Used for homework (instructions incoming)

* Piazza
* Used for questions, discussions, etc.

Teaching Staff Introductions

e Grad TAs: Rithik Sharma and Devon Mckee

* Both PhD students working with me
* Rithik has contributed to LLVM
* Devon made a GPU compiler and got a summer internship at Apple from it

* Undergrad mentors/graders:

* Sanya Srivastava
e Arrian Chi
* Gurpreet Dhillon

They are all awesome! Please get to know them!

A note on COVID and other disruptions

COVID Note : The last few years have been difficult due to the
COVID pandemic and extreme weather conditions. The first priority
in this class in your health and well-being. We will approach any
challenges that arise with compassion and understanding. | expect
that you will do the same, both to the teaching staff and to your
classmates. We will follow university guidelines and work together
to have a productive and fun quarter.

That said, this class is scheduled to be in person. This is not an
asynchronous class, and it is known that learning outcomes will
suffer if you do not attend the synchronous lectures. | may post
lectures online for extra study materials, but you should not expect
them to be an equitable substitute for in-person attendence (e.g.
they do not capture discussions well, and occasionaly the
equiptment has errors). If your situation requires asynchronous
courses, | suggest you contact an undergraduate adviser to
discuss alternative options.

Background

e CSE 12 (assembly)

* We need to understand low level code (e.g. assembly)

e CSE 101 (data-structures and algorithms)

* High-level code is represented as tree/graph data-structures.
* Algorithms on these structures is how we will transform the code into a low-level

* optional (CSE 103): programming languages are specified using regular
expressions and context-free grammars

e optional (CSE 120): understanding how low-level code executes on the
processor can help us automatically apply optimizations

Background

 Officially supported homework environment:

* Docker
* Ubuntu command line
« command line text editor, e.g. vim or emacs

* many students like VSCode, but | do not know it and we do not officially
support it

* You should be comfortable using the command line

Background

* Languages used in this class:
* Python - high-level language
* C-low-level language

* We will provide support for Python (class examples, references, etc.)
* |ltis a “friendly” language and you should be able to pick it up quickly
* We will not use too many advanced features

* You should have learned Cin CSE 12

Background

* Feel free to share your favorite docker or language resources!

Class Format

* 9:20 - 10:25 MWF: 65 minutes
* Merrill Acad 102
| will try to stay ~15 minutes afterwards to answer questions
* Please be respectful of time

* | will record class lectures
* This is meant to be used as a study supplement, not as a replacement for attendance.
* Recordings are not an equitable replacement (discussions, unable to see white board, etc.)
* Recordings are not guaranteed (equipment failures, etc.)

* Keep in mind that this means you are being recording and if you ever want me to
edit anything out of the recordings, please let me know!

Class Format

* This is a smaller class: please ask questions and engage!

* Do not come to class sick! These recordings can work as a substitute
during those times.

Class Format

* First part of class will be announcements, upcoming homeworks,
tests, etc.

* Second part of class will be overviewing the quiz for the previous
class period.

* Third part will be a review of the material from the previous class

* Fourth part is new material

Office Hours

* My office hours:
e TBD, but probably 3 -5 PM on Thursdays
* | will share a google sign up sheet (it will contain a zoom link)
* Slots are 10 minutes

* link will be posted in Canvas around noon that day
e don’t sign up before the Canvas announcement
e don’t sign up unless you have a question
* sign up for 1 slot at a time

 Strict with timing to make sure it is fair

 No office hours this week

Office Hours

* TAs and tutors will decide on theirs in the next few days.

* We hope to get good coverage across days and across in-person and
virtual.

* | will update the website when this is decided:

* https://sorensenucsc.github.io/CSE110A-sp2023/overview.html#teaching-
staff

https://sorensenucsc.github.io/CSE110A-sp2023/overview.html
https://sorensenucsc.github.io/CSE110A-sp2023/overview.html

Asynchronous Discussion

* Piazza
* Private message (to teaching staff) technical homework questions
* Programming and framework questions (global)
* Tech news (global)
 Discussions on class material (global)

* Please do not email directly!
* Email easily gets buried

* Do not expect replies off-hours (after 5 pm, weekends, holidays)

We will try to answer in 24 hours
Please try to help your peers!

Asynchronous Discussion

* Additional forums
* You are welcome to create one yourselves (e.g. discord)
Please make it open and available to all your classmates
Please provide sufficient moderation (e.g. be nice to each other!)
Please do not cheat
Please remember that anything that is not in Canvas may not be private

If there are issues, please let me or a TA know!

Class Content

* 30 classes, split into
* 5 modules, so there are
* 6 classes per module

* Reference book:
Available online from the library
Link on the webpage

Copyrighted Material

ENGINEERING
A
COMPILER

SECOND EDITION

| PPN ST AN I '
ot} 494/ D) (RSN (///ﬁ_, (c) b\\“
S) T SN ‘

\JeSss ’4-
Fo R b=

D
l

L\ 'u"’rmn,ﬁr%' R

\\\\\
WOk
pp.\
ffff#

P S
) %

BN
- "'v"é
(o)

/

C)
&)
Q

MW
YN

~
Noe
27

377 37
& fl
1728 3
Jﬁ\EJX - f\@ﬂ
TN >
F‘f '.-'? £

(VL
v

':

e { L\ ey »
.s\\Q‘G) Pl () (_ ¢

o4 |'l|g l\\\\\‘\'\ »ﬁm«

Keith D. (.oopf/' & Linda Torczon

Copyrighted Material

optional extra book

Compilers

Principles, Techniques, & Tools

Second Edition

5
'y :
“‘!y‘n'

-
'»';':‘1_: \

SoN

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

Class Content

* Module 1: Introduction, Regular Expressions and Lexing

This module will introduce the class, present regular languages and
how to express them using regular expressions. We will discuss how

to implement a lexer using regular expressions, and how to use the
lexer to tokenize a string of input.

Class Content

* Module 2: Context-free Grammars and Parsing

This module will present context-free grammars and how to express
them using BNF notation. We will discuss several parser
implementations that can be used for different grammars.

Class Content

* Module 3: Intermediate Representations

In this module we will discuss how parsers can produce parse trees,
and how parse trees can be operated on to convert complex
expressions in a high-level language to a simpler intermediate

representation (IR).

Class Content

* Module 4: Optimizations

In this module we will discuss several simple optimizations that
exploit the IR structure to make code more efficient. We will discuss
local value numbering and loop unrolling.

Class Content

* Module 5: Backend Compilation

In this module we will discuss the final step of compilation: turning
the IR into an ISA that a processor can execute. We will discuss
register mapping algorithms, and subtle issues in IR to ISA mappings.

Class Content

e Schedule:
https://sorensenucsc.github.io/CSE110A-sp2023/schedule.html

Readings are suggested and will be a useful reference for test studying
and homeworks

Slides and Readings will be uploaded before the lecture

Assignments and Tests

Assignments and Tests

* Assighments:
* 1 or 2 assignment per module
* All homeworks will be worth 50% combined

* Homeworks build on each other and we will experiment with different
granularities

e By the end, you will have a little compiler that you have written by yourself!

* Do not expect help off-hours (after 5 pm, weekends, holidays)

* We will try to make homeworks due at midnight. If this is an issue, we will
move earlier

Assignments and Tests

* Format:
* Coding assignments in Python

* We will provide a docker image that you should be able to run locally, but we won’t
use too many external libraries

It must run on the docker to be graded

The homework will specify constraints on the code format and submission format. It
must adhere to this format to be graded!
We plan to use github classroom for some automatic feedback

* It will tell you if the format is correct

* It may run a small number of tests

* |t probably doesn’t run all of the tests

Github classroom is new for this class and there will probably be some friction.
Please be patient with us!

Assignments and Tests

Two tests: Final and Midterm

* In person timed exam

* Midterm is May 8th

* 65 minutes

* Final is Monday, June 12 8:00-11:00 a.m.

* You can use 3 pages of notes (handwritten or typed)

Assignments and Tests

| expect submitted assignments to contain your own original work. You can refer to notes,
slides, internet, etc. But do not blindly copy code.

IConsulting the internet is a trickey component to constrain. Especially with learning a new
anguage.

* Okay example: “How do you concatenate an array in Python?”
* Not okay example: “How do you implement a compiler in Python?”

Any part of your submission that is not your original work (e.g. code snippets from the
internet) need a citation. My aim is to be lenient with cited code, but we may remove
some points based on the extent. A few missing points is better than a referral for
academic misconduct.

| prefer that you do not collaborate on homework with classmates. In the case that you do,

pl$ase Imention in the submission. Again, a few missing points is better than a misconduct
referral.

Assignments and Tests

This class has a zero tolerance policy on cheating. Please don’t do it. |
would much rather get a hundred emails asking for help than have to
refer anyone for academic misconduct.

Cheating harms you: this is the best chance in your career to take the
time to really learn the class material. If you do not learn the material
you will not be successful in a tech career.

Late policy

* Assignments:
* Will not be accepted late

 Why? Because the assignments in this class build on each other.
* The next assignment depends on the one before it.

* We will release reference solutions to previous assignments so that people
don’t get stuck

* Upload check points, plan on getting work done early

* Tests:
* Will not be accepted late

Reviewing Grades

* For assignments and tests:

* You have 1 week from when the grade is posted to discuss grades with
teaching staff

Quizzes and Lecture

* Small canvas “quiz” every lecture - take the quiz to get the points

* Quiz answers are graded on engagement, not correctness!

* All multiple choice questions are free as long as you answer
* Not always 1 right answer

 Last question is usually a reflection question. Answer in a few questions
 Meant to let you reflect on the material

* Quizzes are released right after class and due before the next class.

* Please only take the quiz if you attended (or watched) the lecture.

* You can have 3 free missed quizzes

Letter

Percentage GPA
Grade

Assignments and Tests

A+ 97-100% | 4.33 0r4.00
A 93-96 % 4.00

Grade Breakdown: A- | 90-92% |3.67
B+ 87—89 % 3.33

. (o)
* homeworks: 50% 5 83 86% | 3.00

e 1 midterm: 10% B- | 80-82% | 2.67

. 1 f|na| 30% C+ 77-79 % 2.33

C |73-76% | 2.00

* quiz: 10% C- |70-72% |1.67
D+ |67-69% | 1.33

D |63-66% | 1.00

D- |60-62% | 0.67

F |0-59% | 0.00

From: https://en.wikipedia.org/wiki/Academic _grading _in_the United_States

Accessibility

UC Santa Cruz is committed to creating an academic environment that
supports its diverse student body. If you are a student with a disability
who requires accommodations to achieve equal access in this course,
please submit your Accommodation Authorization Letter from the
Disability Resource Center (DRC) to me by email, preferably within the
first two weeks of the quarter. | would also like us to discuss ways we
can ensure your full participation in the course. | encourage all students

who may benefit from learning more about DRC services to contact
DRC by phone at 831-459-2089 or by email at drc@ucsc.edu.

Website tour

Final notes

* This class is “new” (especially for me)
* Material is still being adapted.
* There may be issues on HWs and tests (please let us know if you find any!)
* There may be schedule changes

We will do our best and make sure to stay organized and communicate
clearly!

Today’s class

* Class syllabus (I apologize in advance for the text slides)

* High-level discussion on compilers

* Questions: Compilers

principles: Techniques: & Tools

gecond pdinon

 What is a compiler?

 What are
some
compilers? of your favorite

Alfred y. Aho
Monica o L
Ravi Sethi

jeffrey D- ullman

* Hav
e you ever built a compiler?

External compiler error

(- Exror compiling program-

‘ Error message: error CS0234: Thetype of namespace name 'Setimage’
does not exst inthe namespace 'Clipboard' (areyou missing an
assembly reference?)

Line number:

Line: KcyDownLauncher.Newl(ObjLauncher.Value."KcyDcywn')

COMPILER INFRASTRUCTURE

What is a compiler?

What are some of your favorite compilers

title: "Graduate Compiler Design"
layout: single

Welcome to xxCSE211l:xx _Graduate Compiler Design_, Fall 2021 Quarter at UCSC!

W o0 NOUL A WN

skInstructor:sx [Tyler Sorensen] (https://users.soe.ucsc.edu/~tsorensen/)

10 - skTime:*x* MWF 4:00 - 5:05 pm

11 - skLocation:xx Thimann Lab 101 (_in person!_)

12 - xxContact:*x \<first name\>.\<last name\>@ucsc.edu

13

14

15 Hello! I'm Tyler and welcome to the graduate compiler design course!

16

17 In this class you will learn about advanced topics in compiler design and implementation. In the abstract, compilers explore many of the [foundational problems in

computer science] (https://en.wikipedia.org/wiki/Halting_problem). In practice, compilers are [massive pieces of well-oiled software
(https://www.phoronix.com/scan.php?page=news_item&px=MTg30TQ), and are some of the engineering marvels of the modern world. Given the end of Dennard's scaling,
compilers will play an increasingly important role to achieve further computational gains. _The main focus of this class is how compilers can make your code more
efficient and safe on modern (and near-future) processors_.

CSE211, Fall 2021 Home Overview Schedule Homeworks References

Graduate Compiler Design

Welcome to CSE211: Graduate Compiler Design, Fall
2021 Quarter at UCSC!

Building this website started with:
 Markdown to describe the page
* compiled with Jekyll to a static webpage
 static webpage is in HTML and javascript

e Instructor: Tyler Sorensen

¢ Time: MWF 4:00 - 5:05 pm

¢ Location: Thimann Lab 101 (in person!)

¢ Contact: <first name>.<last name>@ucsc.edu

Hello! I'm Tyler and welcome to the graduate compiler design
course!

In this class you will learn about advanced topics in compiler
design and implementation. In the abstract, compilers explore
many of the foundational problems in computer science. In
practice, compilers are massive pieces of well-oiled software, and

Have you ever built a compiler?

What is a compiler?

Input g

Compiler) Output

What is a compiler?

Input g

Compiler) Output

Strings belonging to Strings belonging to
language L language I

What is a compiler?

Input g

Compiler) Output

Strings belonging to Strings belonging to
language L language U
A series of statements in An executable binary file

programming language L in an ISA language

What is a compiler?

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

An x86 Binary executable

A program written in C++

What is a compiler?

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

An x86 Binary executable

A program written in C++

What is a compiler? warnings

Analysis

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

An x86 Binary executable
A program written in C++

What is a compiler? warnings

Analysis

A valid input must have a
valid output.

Semantic equivalence ’

Compiler g Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

An x86 Binary executable
A program written in C++

What is a compiler? warnings

Analysis

A valid input must have a
valid output.

Semantic equivalence ’

Compiler g Output

Input g

Strings belonging to Strings belonging to
language L language I
What can happen when
A series of statements in the Input isn’t valid? An executable binary file
programming language L in an ISA language

An x86 Binary executable
A program written in C++

What can happen when the Input isn’t valid?

int my var = 5;

my var = my car + 5;

Try running this through a compiler; you will get an error and a suggestion!

What can happen when the Input isn’t valid?

int foo() {
int *x = malloc(100*sizeof(int))
return x[100];

}

What about this one?

What can happen when the Input isn’t valid?

int foo() {
int *x = malloc(100*sizeof(int))
return x[100];

}

What about this one? No error...

What can happen when the Input isn’t valid?

int my var
for (int 1
my var++;

0;
0; 1 < 128; 1i++) {

}

What about this one?

Thank you!

* Thank you for giving it a chance!

* Your experiences and feedback will help shape this class for future
students.

* Email is always open for comments about class material, HW
assignments, etc.

Next Class

* Module 1: regular languages, regular expressions and lexing

