CSE110A: Compilers

April 14, 2023

* Topics:

The dog ran across the park

-

ARTICLE

T

* Finishing up Scanners

e Scanner actions
e PLY Scanner

NOUN

VERB

PREPOSITION

ARTICLE

NOUN

Announcements

* Remote lecture again today ®
* Hoping to get feeling better by Monday
* Couldn’t speak at all yesterday
* Rescheduling office hours for Tuesday, 3 -5

Office hours

TA Office Hours:
Devon is available on Tuesdays from 3:00PM to 5:00PM, virtual.

Devon will use the Zoom waiting room feature, and answer questions first-come-first-serve. Please
try to keep your question within 10 minutes.

Zoom Link

Rithik is available on Fridays from 3:00PM to 5:00PM, TBD.

Rithik's office hours will be hybrid and he will use a similar sign-up sheet.
Mentoring Hours:

Arrian is available on Tuesdays and Thursdays from 1:00PM - 3:00PM, virtual.
Neal is available on Tuesdays and Thursdays, 6:30PM - 7:30PM, virtual.

Sanya is available on Wednesdays 5:30PM - 6:30PM and Fridays, 2:00PM - 3:00PM, virtual.

Announcements

e HW 1 is released

* By the end of today you should have everything that you need
* Please let us know of any issues you find, these are still new homeworks!

* Due in 10 days (April 24) by midnight

Quiz

When implementing a Scanner using an exact RE matcher, the number of calls to the RE matcher
depends on what?

(O The number of tokens
(O The length of the string that is being scanned
(O Both of the above

(O how many operators each RE has

EM Scanner

e Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]_|_"

"n—u

uyn

i g 1

" | \nn
17

" o
(4

“stariable

50 + 30 * 20;"

Quiz

For which scanners can token definitions be reasoned about independently (e.g. when reasoning
about if they can match strings with the same prefix)

(] exact match scanner
(] start of string scanner
() named group scanner

(] naive scanner

EM Scanner

e Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]_|_"

"n—u

uyn

i g 1

" | \nn
17

" o
(4

“stariable

50 + 30 * 20;"

SOS Scanner

e Consideration

How to scan this string?

Try to match on each token

“CSE110A”
LETTERS = “[A-Z]+"
Ak e Two matches:
CLASS = "CSE110A“ LETTERS: “CSE"

CLASS: "CSE110A"

Which one do we choose?

SOS Scanner

e One more consideration

Within 1 RE, how does this match?

“CSE110A"

CLASS — “CSE|110A|CSE110A"

When using the SOS Scanner: A token definition either should not:
e contain choices where one choice is a prefix of another
» order choices such that the longest choice is the first one

CLASS = “CSE110A|110A|CSE”

Quiz

For which scanners can token definitions be reasoned about independently (e.g. when reasoning
about if they can match strings with the same prefix)

(] exact match scanner
(] start of string scanner
() named group scanner

(] naive scanner

Quiz

Given C-style ids and numbers, can the following string be tokenized? If so? how many tokens will
there be?

"123abc123"

(] Token error
(] 1 lexeme
(] 2 lexeme

(] 3 lexeme

tokenizing

“123abcl23"

ID
NUM

“Ta=z][0-9a-z]+"
'y} [0_9]_I_II

Qu

1Z

Given a regular expression library, what sort of API calls would you look for in order to implement a
scanner?

Regex AP calls

re. fullmatch(pattern, string, flags=0) {
If the whole string matches the regular expression pattern, return a corresponding match object.
Return None if the string does not match the pattern; note that this is different from a zero-length
match.

re.match(pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return
a corresponding match object. Return None if the string does not match the pattern; note that this
is different from a zero-length match.

Regex AP calls

e Other considerations?

Regex AP calls

e Other considerations?
* Named groups?
e Operators to escape?
* How it handles choice?
* Speed?

Finishing up scanner implementations

SOS Scanner

* Pros
* Much faster than EM scanner. Only 1 call to each RE per token () call

e Cons

* Depends on an efficient implementation of match ()
* Typically provided in most RE libraries (for this exact reason)

* Requires some care in token definitions and prefixes

Scanners

* Using RE matchers to build scanners
e Exact match (EM) scanners
 Start-of-string (SOS) scanners
* named group (NG) scanners

S O S S Ca ﬂ n e r We’re going to optimize this to 1 RE call!

It can really help if you have many tokens

* Pros
* Much faster than EM scanner. Only 1 call to each RE per token ()

e Cons

* Depends on an efficient implementation of match ()
* Typically provided in most RE libraries (for this exact reason)

* Requires some care in token definitions and prefixes

NG Scanner

e We will still use the match API call

re. fullmatch(pattern, string, flags=0) {

If the whole string matches the regular expression pattern, return a corresponding match object.

Return None if the string does not match the pattern; note that this is different from a zero-length
match.

re.match(pattern, string, flags=0)

If zero or more characters at the beginning of string match the regular expression pattern, return

a corresponding match object. Return None if the string does not match the pattern; note that this
is different from a zero-length match.

NG Scanner

e Start out with token definitions

* Merge them into one RE definition

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]_|_"

"n—u

II+II

"yn

" | \nn

“uqn
(4

SINGLE RE

NG Scanner

e Start out with token definitions

* Merge them into one RE definition

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]_|_n

"n—u

II+II

"yn

" | \nn

“uqn
(4

SINGLE RE = “[a-z]+"

NG Scanner

e Start out with token definitions

* Merge them into one RE definition

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]_|_"

"n—u

II+II

"yn

" | \nn

“uqn
(4

SINGLE RE = “([a-2z]+)"

NG Scanner

e Start out with token definitions

* Merge them into one RE definition

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]+"

"n—u

II+II

"yn

" | \nn

“uqn
(4

SINGLE_RE = “([a—z]+) | ([O_9]+)"

NG Scanner

e Start out with token definitions

* Merge them into one RE definition

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]_|_"

"n—u

II+II

"yn

" | \nn

“uqn
(4

and so on

SINGLE RE = “([a-2z]+)|([0-91+)|(..)]|"

NG Scanner

e Start out with token definitions

* Merge them into one RE definition

ID

NUM
ASSIGN
PLUS
MULT
IGNORE
SEMI

u[a_z]_|_"
7] [0-9]_|_"

"n—u

uyn

i g 1

" | \nn
17

" o
(4

Give each group a name
corresponding to its token

SINGLE RE = “(?P<ID>[a-z]+)|
(2P<NUM>[0-9]+)
|(..)|"

NG Scanner

e Start out with token definitions
* Merge them into one RE definition

It’s a giant RE, but you can construct

SINGLE RE = “(?P<ID>[a-z]+) | it automatically
(?P<NUM>[0-9]+) |
(?P<ASSIGN>=) |
(?P<PLUS>+) |
(?P<MULT>*) |
(?P<IGNORE> |[\n) |
(?P<SEMI>;)"

NG Scanner

* to implement token ()

Try to match the whole string to the single RE

SINGLE RE “(?2P<ID>[a-z]+) | “variable = 50 + 30 * 20;"
(?P<NUM>[0-9]+) |
(?P<ASSIGN>=) |
(?P<PLUS>+) |
(?P<MULT>*) |
(?P<IGNORE> |[\n) |
(

?P<SEMI>;)"

NG Scanner

* to implement token ()

Try to match the whole string to the single RE

SINGLE RE “(?2P<ID>[a-z]+) | “variable = 50 + 30 * 20;"
(?P<NUM>[0-9]+) |
(?P<ASSIGN>=) | Check the group dictionary in the
(?P<PLUS>+)| result
(?P<MULT>¥) |
(?P<IGNORE> |[\n) |
(

?P<SEMI>;)"

NG Scanner

* to implement token ()

SINGLE RE

14

*\J

P<ID>[a-z]+) |

?P<MULT>*) |
?P<IGNORE> |\n) |
?P<SEMI>;)"

Try to match the whole string to the single RE

“srariable =

{"ID"
“NUM"”
“ASSIGN”
“PLUS"
“MULT”
“IGNORE”
“SEMI”

50 + 30 * 20;”

: “variable”
¢+ None

: None
: None
: None
: None
: None}

NG Scanner

* to implement token ()

SINGLE RE

14

*\J

P<ID>[a-z]+) |

?P<MULT>*) |
?P<IGNORE> |\n) |
?P<SEMI>;)"

Try to match the whole string to the single RE

“srariable =

{"ID"
“NUM"”
“ASSIGN”
“PLUS"
“MULT”
“IGNORE”
“SEMI”

50 + 30 * 20;”

: “variable”
¢+ None

: None
: None
: None
: None
: None}

NG Scanner

* to implement token ()

SINGLE RE

14

Try to match the whole string to the single RE

(?P<ID>[a-z]+) | “yvariable = 50 + 30 * 20;"
(?P<NUM>[0-9]+) |
(?P<ASSIGN>=) | |
?P<PLUS>+ {"ID" : “variable”
(® P) | IINUMII : None
(?P<MULT>*) | “ASSIGN” : None
(?P<IGNORE> |\n) | “PLUS” : None
?P<SEMI>;)" “MULT” : None
(?P<5 /) “IGNORE” : None

“SEMI” : None}

Return the lexeme (ID, “variable”)

NG Scanner

* to implement token ()

chop!
SINGLE RE = “(?P<ID>[a-z]+) | “yariable = 50 + 30 * 20;"

(?P<NUM>[0-9]+) |
(?P<ASSIGN>=)| |
?P<PLUS>+ | {"ID" : “variable”
(:) “NUM" : None
(?P<MULT>*) | “ASSIGN” : None
(?P<IGNORE> |\n) | “PLUS” : None
2P< >\ “MULT" : None
(?P<SEMI>;) “IGNORE” : None

“SEMI" : None}

Return the lexeme (ID, “variable”)

NG Scanner

* to implement token ()

chop!

SINGLE RE = “(?P<ID>[a-z]+) | “ = 50 + 30 * 20;"
(?P<NUM>[0-9]+) |
(?P<ASSIGN>=) |
(?P<PLUS>+) |
(?P<MULT>*) |
(?P<IGNORE> |[\n) |
(?P<SEMI>;)"

How to deal with common prefixes in token
definitions?

e Recall from SOS scanner:

How to scan this string?

“CSE110A"
LETTERS = “[A-Z]+"
NUM = “[0-9]+"
CLASS = "CSE110A“

How to deal with common prefixes in token
definitions?

* Convert to a single RE

How to scan this string?

“CSE110A"

SINGLE RE = “
(?P<LETTERS>([A-Z]+) |
(?P<NUM>([0-9]+) |
(?P<CLASS>CSE110A)"

How to deal with common prefixes in token
definitions?

* Convert to a single RE

How to scan this string?

“CSE110A"

SINGLE RE = “
(?P<LETTERS>([A-Z]+) |
(?P<NUM>([0-9]+) |
(?P<CLASS>CSE110A)" What do we think the dictionary will look like?

How to deal with common prefixes in token
definitions?

* Convert to a single RE

How to scan this string?

“CSE110A"
SINGLE RE = “
(?P<LETTERS>([A-Z]+) |
(?P<NUM>([0-9]+) | {"LETTERS” : “CSE”
(?P<CLASS>CSE110A)" “NUM® : None
“CLASS" ¢ None

}

How to deal with common prefixes in token
definitions?

* Convert to a single RE

“CSE110A”
SINGLE RE = “
(?P<LETTERS>([A-Z]+) |
(?P<NUM>([0-9]+) | {"LETTERS” : “CSE”
(?P<CLASS>CSE110A)" “NUM® : None
“CLASS" ¢ None
}

What does this mean?

* Tokens should not contain prefixes of each other
OR

e Tokens that share a common prefix should be ordered such that the longer token comes first

How to deal with common prefixes in token
definitions?

e Careful with these tokens

INCR
ADD

Ensure that you provide them in the right order so that the longer one is first!

NG Scanner

* Pros

e Cons

NG Scanner

* Pros
* FAST! Only 1 RE call per token ()

* Cons
* Requires a named group RE library
* inter-token interactions need to be considered

Scanners we have discussed

 Naive Scanner

* RE based scanners
e Exact match (EM) scanners
 Start-of-string (SOS) scanners
* named group (NG) scanners

Which one to use?
Complex decision with performance, expressivity, and token requirements

In practice

* Most scanner generators that | am aware of have SOS semantics
* You can reason about tokens independently
e Use fast "match” implementations under the hood

* Mainstream compilers:
* have hand coded and hand optimized scanners
 very_ fast
* very_hard to modify
* Only worth it to do this if you have the need and time

Moving on

* Token actions
* Replacement
e Keywords
* Error reporting

* Scanner error recovery

Moving on

* Token actions
* Replacement
e Keywords
* Error reporting

* Scanner error recovery

First class functions

* A programming language is said to have first class functions if functions can
be stored as variables

* Python has great support for this

* Functional languages have great support (and compiler helps out by
checking types%

* |n C++
 Classically: function pointers
* Newer: supports lambdas

Functions as part of a token definition

* In our scanners, we give them as the 3rd element in the token tuple
definition

* A token action takes in a lexeme and returns a lexeme.
e Possibly the same lexeme

They generally do three things:
* modify a token
* refine a token
* modify the scanner state

Functions as part of a token definition

* Once a token is matched, its token action is called on its lexeme,
* and the lexeme it returns is returned from the scanner,

* Code example in the EM

Examples

Token actions generally do three things:
 modify a token
* refine a token
* modify the scanner state

Modify a token

* Example using natural language

Modify a token

* PRONOUN
* NOUN

* VERB

* ADJECTIVE

Tokens

{His, Her, Their}

{Dog, Cat, Car, Park}
{Slept, Ate, Ran}
{Purple, Spotted, Old}

Tokens Definitions

Modify a token

* PRONOUN
* NOUN

* VERB

* ADJECTIVE

Tokens

{His, Her, Their}

{Dog, Cat, Car, Park}
{Slept, Ate, Ran}
{Purple, Spotted, Old}

Tokens Definitions

Example:
Can change any pronoun value
to gender neutral (“Their”)

Modify a token

* Example using types

Some ML frameworks have £loat16 types in their programming
languages

Many devices only support £loat types (32 bit)

. Scanner can easily .
floatl6 x, vy; change float16 to float x, vy;

return x+y; float with a token return x+y;
action

Examples

Token actions generally do three things:
* modify a token
* refine a token
* modify the scanner state

Keywords: (finally!)

Keywords

TOKENS

ID = [a=-2]+

NUM = [0-9]+
ASSIGN = "="

PLUS = 44

MULT = 4K

IGNORE = [“ “, “\n"]
KEYWORDS

[(INT,“int"”), (FLOAT,

“float”)

-]

Keywords

TOKENS
ID

NUM
ASSIGN
PLUS = “+"

MULT = “*"

IGNORE = [“ “, “\n"]

[a—-2]+
[0-9]+

"n—u

Code example in EM Scanner

KEYWORDS
[(INT,“1int”), (FLOAT, “float”) ...]

Examples

Token actions generally do three things:
* modify a token
* refine a token
 modify the scanner state

Modiftying state

Our big use case here is error reporting
* Line number
e Column number

Doesn’t work in our homework
* Our homework has scanners import tokens
e Usually it is the other way around!!

* Maybe some of you can think of a design where it does work in our
homework

Modiftying state

In the common case, we can create a scanner and then update a class
member in a token action

EM Scanner example:

Advanced topic

* Recovering from errors (syntax highlighting)
* show Godbolt example
* use the command line option: -fsyntax-only -Xclang -dump-tokens
* try to tokenize weird symbols, such as

* return an error token and try to recover
e eating one character
e eating until a space
* eating until a newline

On Monday

* Enjoy your weekend!

* We will be starting Module 2 on parsing!

Next topic

* Using a scanner generator:

. '(Ij'hey have their own designs and it is important to understand trade-offs and design
ecisions

 Classically:
* Lex and Flex

 Modern:
e Antlr (ANother Tool for Language Recognition)

* A good in-between:
e PLY - a Lex and Yacc implementation in Python

Lex/Flex

* Old tools - input is a token specification file. Produces a complicated C
file that you would include in your project

* New language technology makes things a lot easier (higher order
functions, fast RE matchers, etc.)

PLY

* written mostly for education purposes. Uses only core python
features

e Personally, | have used it many times for little compiler projects

* Documented to be a python implementation of Lex, but uses a much
nicer interface

How to use PLY’s Scanner

Scanner Demo

e Library import

import ply.lex as lex

e Token list

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE"]

» Token specification

t_ADJECTIVE = "old|purple|spotted"
t_NOUN = "dog|computer|car"
t_ARTICLE = "the|my|a|your"
t_VERB = "ran|crashed|accelerated"

Scanner Demo

e Build the lexer

lexer = lex. lex() what happens?

* Need an error function

Error handling rule

def t_error(t):
print("Illegal character '%s'" % t.valuelQ])
exit(1)

Scanner Demo

* Now give the lexer some input

lexer.input(“"dog")
* The lexer streams the input, we need to stream the tokens:

Tokenize
while True:
= lexer.token()
if not tok:
break # No more input
print(tok)

Scanner Demo

° OUtpUt.‘ line number (1 indexed)

/

LexToken(NOUN, 'dog’, 1, 0)

number of characters streamed
(0 indexed)

 try a longer string:

lexer.input("dog computer")

What happens?

Scanner Demo

* Need to add a token for whitespace!
= ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "WHITESPACE"]
= "\ !
* Now we can lex:

LexToken(NOUN, 'dog',1,0)
LexToken(WHITESPACE,' ',1,3)
LexToken (NOUN, 'computer',1,4)

Scanner Demo

* Now we can do a sentence
lexer.input("my spotted dog ran")

LexToken(ARTICLE, 'my',1,0)
LexToken(WHITESPACE,"' ',1,2)
LexToken(ADJECTIVE, 'spotted’',1,3)
LexToken(WHITESPACE,"' ',1,10)
LexToken (NOUN, 'dog',1,11)
LexToken(WHITESPACE,"' ',1,14)
LexToken(VERB, 'ran',1,15)

Can we clean this up?

Scanner Demo

* We can ignore whitespace

#t_WHITESPACE = "\

gets simplified to:

LexToken(ARTICLE, 'my',1,0)
LexToken (WHITESPACE,"' ',1,2)
LexToken(ADJECTIVE, 'spotted',1,3)

(

E LexToken (ARTICLE, 'my',1,0)
LexToken(WHITESPACE,' ',1,10)

(

(

(

LexToken(ADJECTIVE, 'spotted’,1,3)
LexToken (NOUN, 'dog',1,11)

LexToken(NOUN, 'dog',1,11) LexToken(VERB, 'ran',1,15)

LexToken (WHITESPACE,' ',1,14)
LexToken(VERB, 'ran',1,15)

Scanner Demo

 What about newlines?

lexer.input(
my spotted dog ran
the old computer crashed

)

e Need to add a newline token!

Scanner Demo

 What about newlines?

lexer.input ("""
my spotted dog ran
the old computer crashed

IIIIII)

e Need to add a newline token!

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE"]

t_NEWLINE = "\\n"

Scanner Demo

LexToken(NEWLINE, '\n"',1,0)
LexToken(ARTICLE, 'my',1,1)
LexToken(ADJECTIVE, 'spotted’,1,4)
LexToken (NOUN, 'dog',1,12)
LexToken(VERB, 'ran',1,16)
LexToken(NEWLINE, '\n"',1,19)
LexToken(ARTICLE, 'the',1,20)

Line numbers are not updating

Scanner Demo

* Token actions, similar to production actions

— II\\nII

Changes into:

def t_NEWLINE(t):
II\\nII

return t

+=

1

docstring is the regex, lexer object which has a linenumber
attribute.

If we don’t return anything, then it is ignored.

Scanner Demo

* Example: changing gendered pronouns into gender neutral pronouns

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE", "PRONOUN"]
t_PRONOUN = "her|his|their"

lexer.input ("""
his spotted dog ran
her old computer crashed

IIIIII)

Scanner Demo

 Add a token action:

def t_PRONOUN(t):
"her|his|their"
if t.value in ["his", "her"]:
t.value = "their"
return t

Now output will have all gender neutral pronouns!

