
CSE110A: Compilers
April 14, 2023

• Topics:
• Finishing up Scanners

• Scanner actions
• PLY Scanner

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Announcements

• Remote lecture again today L
• Hoping to get feeling better by Monday
• Couldn’t speak at all yesterday
• Rescheduling office hours for Tuesday, 3 - 5

Office hours

Announcements

• HW 1 is released
• By the end of today you should have everything that you need
• Please let us know of any issues you find, these are still new homeworks!

• Due in 10 days (April 24) by midnight

Quiz

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

Quiz

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

SOS Scanner

• Consideration

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

Try to match on each token

Two matches:
LETTERS: “CSE”
CLASS: ”CSE110A”

Which one do we choose?

SOS Scanner

• One more consideration

CLASS = “CSE|110A|CSE110A”
“CSE110A”

Within 1 RE, how does this match?

Returns “CSE”, but this isn’t what we want!!!

When using the SOS Scanner: A token definition either should not:
• contain choices where one choice is a prefix of another
• order choices such that the longest choice is the first one

CLASS = “CSE110A|110A|CSE”

Quiz

Quiz

tokenizing

“123abc123”

ID = “[a-z][0-9a-z]+”
NUM = “[0-9]+”

Quiz

Regex API calls

Regex API calls

• Other considerations?

Regex API calls

• Other considerations?
• Named groups?
• Operators to escape?
• How it handles choice?
• Speed?

Finishing up scanner implementations

SOS Scanner

• Pros
• Much faster than EM scanner. Only 1 call to each RE per token() call

• Cons
• Depends on an efficient implementation of match()

• Typically provided in most RE libraries (for this exact reason)

• Requires some care in token definitions and prefixes

Scanners

• Using RE matchers to build scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

SOS Scanner

• Pros
• Much faster than EM scanner. Only 1 call to each RE per token()

• Cons
• Depends on an efficient implementation of match()

• Typically provided in most RE libraries (for this exact reason)

• Requires some care in token definitions and prefixes

We’re going to optimize this to 1 RE call!
It can really help if you have many tokens

NG Scanner

• We will still use the match API call

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE =

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “[a-z]+”

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “([a-z]+)”

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “([a-z]+)|([0-9]+)”

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “([a-z]+)|([0-9]+)|(..)|”

and so on

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)
|(..)|”

Give each group a name
corresponding to its token

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

It’s a giant RE, but you can construct
it automatically

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

Check the group dictionary in the
result

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

Return the lexeme (ID, “variable”)

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

chop!

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

Return the lexeme (ID, “variable”)

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“ = 50 + 30 * 20;”

chop!

How to deal with common prefixes in token
definitions?
• Recall from SOS scanner:

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

How to scan this string?

How to deal with common prefixes in token
definitions?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

How to scan this string?

What do we think the dictionary will look like?

How to deal with common prefixes in token
definitions?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

How to scan this string?

{”LETTERS” : “CSE”
“NUM” : None
“CLASS” : None
}

How to deal with common prefixes in token
definitions?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

What does this mean?
• Tokens should not contain prefixes of each other
OR
• Tokens that share a common prefix should be ordered such that the longer token comes first

{”LETTERS” : “CSE”
“NUM” : None
“CLASS” : None
}

How to deal with common prefixes in token
definitions?

• Careful with these tokens

INCR = “++”
ADD = “+”

EQ = “==“
ASSIGN = “=“

How to deal with common prefixes in token
definitions?

Ensure that you provide them in the right order so that the longer one is first!

NG Scanner

• Pros

• Cons

NG Scanner

• Pros
• FAST! Only 1 RE call per token()

• Cons
• Requires a named group RE library
• inter-token interactions need to be considered

Scanners we have discussed

• Naïve Scanner

• RE based scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

Which one to use?
Complex decision with performance, expressivity, and token requirements

In practice

• Most scanner generators that I am aware of have SOS semantics
• You can reason about tokens independently
• Use fast ”match” implementations under the hood

• Mainstream compilers:
• have hand coded and hand optimized scanners
• _very_ fast
• _very_ hard to modify
• Only worth it to do this if you have the need and time

Moving on

• Token actions
• Replacement
• Keywords
• Error reporting

• Scanner error recovery

Moving on

• Token actions
• Replacement
• Keywords
• Error reporting

• Scanner error recovery

First class functions

• A programming language is said to have first class functions if functions can
be stored as variables

• Python has great support for this

• Functional languages have great support (and compiler helps out by
checking types)

• In C++
• Classically: function pointers
• Newer: supports lambdas

Functions as part of a token definition

• In our scanners, we give them as the 3rd element in the token tuple
definition

• A token action takes in a lexeme and returns a lexeme.
• Possibly the same lexeme

They generally do three things:
• modify a token
• refine a token
• modify the scanner state

Functions as part of a token definition

• Once a token is matched, its token action is called on its lexeme,

• and the lexeme it returns is returned from the scanner,

• Code example in the EM

Examples

Token actions generally do three things:
• modify a token
• refine a token
• modify the scanner state

Modify a token

• Example using natural language

Modify a token

• PRONOUN = {His, Her, Their}
• NOUN = {Dog, Cat, Car, Park}
• VERB = {Slept, Ate, Ran}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Modify a token

• PRONOUN = {His, Her, Their}
• NOUN = {Dog, Cat, Car, Park}
• VERB = {Slept, Ate, Ran}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Example:
Can change any pronoun value
to gender neutral (“Their”)

Modify a token

• Example using types

Some ML frameworks have float16 types in their programming
languages

Many devices only support float types (32 bit)

float16 x, y;
return x+y;

float x, y;
return x+y;

Scanner can easily
change float16 to
float with a token
action

Examples

Token actions generally do three things:
• modify a token
• refine a token
• modify the scanner state

Keywords: (finally!)

Keywords

TOKENS
ID = [a-z]+
NUM = [0-9]+
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “, “\n”]

KEYWORDS
[(INT,“int”), (FLOAT, “float”) ...]

Keywords

TOKENS
ID = [a-z]+
NUM = [0-9]+
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “, “\n”]

KEYWORDS
[(INT,“int”), (FLOAT, “float”) ...]

Code example in EM Scanner

Examples

Token actions generally do three things:
• modify a token
• refine a token
• modify the scanner state

Modifying state

Our big use case here is error reporting
• Line number
• Column number

Doesn’t work in our homework
• Our homework has scanners import tokens
• Usually it is the other way around!!

• Maybe some of you can think of a design where it does work in our
homework

Modifying state

In the common case, we can create a scanner and then update a class
member in a token action

EM Scanner example:

Advanced topic

• Recovering from errors (syntax highlighting)
• show Godbolt example
• use the command line option: -fsyntax-only -Xclang -dump-tokens
• try to tokenize weird symbols, such as `

• return an error token and try to recover
• eating one character
• eating until a space
• eating until a newline

On Monday

• Enjoy your weekend!

• We will be starting Module 2 on parsing!

Next topic

• Using a scanner generator:
• They have their own designs and it is important to understand trade-offs and design

decisions

• Classically:
• Lex and Flex

• Modern:
• Antlr (ANother Tool for Language Recognition)

• A good in-between:
• PLY - a Lex and Yacc implementation in Python

Lex/Flex

• Old tools - input is a token specification file. Produces a complicated C
file that you would include in your project

• New language technology makes things a lot easier (higher order
functions, fast RE matchers, etc.)

PLY

• written mostly for education purposes. Uses only core python
features

• Personally, I have used it many times for little compiler projects

• Documented to be a python implementation of Lex, but uses a much
nicer interface

How to use PLY’s Scanner

Scanner Demo

• Library import
import ply.lex as lex

• Token list

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE"]

• Token specification

t_ADJECTIVE = "old|purple|spotted"
t_NOUN = "dog|computer|car"
t_ARTICLE = "the|my|a|your"
t_VERB = "ran|crashed|accelerated"

Scanner Demo

• Build the lexer
lexer = lex.lex() what happens?

• Need an error function

Error handling rule
def t_error(t):

print("Illegal character '%s'" % t.value[0])
exit(1)

Scanner Demo

• Now give the lexer some input

• The lexer streams the input, we need to stream the tokens:

lexer.input("dog")

Tokenize
while True:

tok = lexer.token()
if not tok:

break # No more input
print(tok)

Scanner Demo

• output:

LexToken(NOUN, 'dog’, 1, 0)

line number (1 indexed)

number of characters streamed
(0 indexed)

• try a longer string:

lexer.input("dog computer")

What happens?

Scanner Demo

• Need to add a token for whitespace!

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "WHITESPACE"]

t_WHITESPACE = '\ '

...

• Now we can lex:

LexToken(NOUN,'dog',1,0)
LexToken(WHITESPACE,' ',1,3)
LexToken(NOUN,'computer',1,4)

Scanner Demo

• Now we can do a sentence

lexer.input("my spotted dog ran")

LexToken(ARTICLE,'my',1,0)
LexToken(WHITESPACE,' ',1,2)
LexToken(ADJECTIVE,'spotted',1,3)
LexToken(WHITESPACE,' ',1,10)
LexToken(NOUN,'dog',1,11)
LexToken(WHITESPACE,' ',1,14)
LexToken(VERB,'ran',1,15)

Can we clean this up?

Scanner Demo

• We can ignore whitespace

#t_WHITESPACE = '\
t_ignore = ' '

LexToken(ARTICLE,'my',1,0)
LexToken(ADJECTIVE,'spotted',1,3)
LexToken(NOUN,'dog',1,11)
LexToken(VERB,'ran',1,15)

LexToken(ARTICLE,'my',1,0)
LexToken(WHITESPACE,' ',1,2)
LexToken(ADJECTIVE,'spotted',1,3)
LexToken(WHITESPACE,' ',1,10)
LexToken(NOUN,'dog',1,11)
LexToken(WHITESPACE,' ',1,14)
LexToken(VERB,'ran',1,15)

gets simplified to:

Scanner Demo

• What about newlines?

lexer.input("""
my spotted dog ran
the old computer crashed
""")

• Need to add a newline token!

Scanner Demo

• What about newlines?

lexer.input("""
my spotted dog ran
the old computer crashed
""")

• Need to add a newline token!

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE"]

t_NEWLINE = "\\n"

Scanner Demo
LexToken(NEWLINE,'\n',1,0)
LexToken(ARTICLE,'my',1,1)
LexToken(ADJECTIVE,'spotted',1,4)
LexToken(NOUN,'dog',1,12)
LexToken(VERB,'ran',1,16)
LexToken(NEWLINE,'\n',1,19)
LexToken(ARTICLE,'the',1,20)

Line numbers are not updating

Scanner Demo

• Token actions, similar to production actions

def t_NEWLINE(t):
"\\n"
t.lexer.lineno += 1
return t

t_NEWLINE = "\\n"

Changes into:

docstring is the regex, lexer object which has a linenumber
attribute.

If we don’t return anything, then it is ignored.

Scanner Demo

• Example: changing gendered pronouns into gender neutral pronouns

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE", "PRONOUN"]
t_PRONOUN = "her|his|their"

lexer.input("""
his spotted dog ran
her old computer crashed
""")

Scanner Demo

• Add a token action:

def t_PRONOUN(t):
"her|his|their"
if t.value in ["his", "her"]:

t.value = "their"
return t

Now output will have all gender neutral pronouns!

