CSE110A: Compilers

April 10, 2023

dCross

- \ T

PREPOSITION

* Topics:
* Lexical Analysis:
e Short comings of naive scanner

* Regular expressions:
* Recursive definition
* Syntactic sugar
* groups

Announcements

* HW 1 will be released by Wednesday

* You will have 10 days to do it
 There will office hours this week and we will monitor Piazza

* April 24 and 26 will be asynchronous (or remote) lectures as | will be
away at a conference

Announcements

* My office hours:
* Thursday, 3-5PM

* Sign-up sheet goes live around noon
* 10 minute slots

. TA Office H 5
e Other office hours: ce Hours

Devon is available on Mondays from 1 PM to 3 PM, virtual.
Rithik is available on Fridays from 3 PM to 5 PM, TBD.
Rithik's office hours will be hybrid and he will use a similar sign-up sheet.

Mentoring Hours:

Arrian is available on Thursdays from 1 PM to 3 PM, virtual.

Announcements

* Docker setup instructions are available

e https://sorensenucsc.github.io/CSE110A-sp2023/homework-setup.html

* We will add the required software needed for the HWs to the docker
image.

* Please try this out over the next few days and let us know if you have issues

* Your code must run in the docker to be graded!
* There can be tons of tiny differences when developing Python natively
 If you want packages installed globally, let us know!

https://sorensenucsc.github.io/CSE110A-sp2023/homework-setup.html

Scanner API

The scanner member function "token" returns a list of the tokens that can recognize

O True

(O False

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

* ADJECTIVE

Tokens

{Purple, Spotted, Old}

Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex (software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Scanner API

Constructor, generates a Scanner
s = ScannerGenerator(tokens)

The string we want to do
lexical analysis on
s.1lnput(“My Old Computer Crashed”)

Returns the next lexeme
s.token()

s = ScanerGenerator (tokens)
s.input(“My Old Computer Crashed”)
s.token()
r “My™)
s.token()
ADJECTIVE, “01d")
s.token()
NOUN, *“Computer”)
s.token()
(, “Crashed”)
> s.token()
None

V~V~V~YV VYV

Scanning vs. Parsing

A scanner should make sure that the sequence of lexemes is valid, e.g. the scanner should make sure
two numbers are separated by a valid operator.

O True

(O False

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

* ADJECTIVE

Tokens

{Purple, Spotted, Old}

Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex (software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Parsing is the first step in a compiler

* How do we parse a sentence in English?

My dog ran across the park

-

ARTICLE

T

NOUN

VERB

PREPOSITION

ARTICLE

NOUN

Parsing is the first step in a compiler

* How do we parse a sentence in English?

MyMyMy My M

-

ARTICLE

ARTICLE

ARTICLE

ARTICLE

ARTICLE

e

ARTICLE

Lexical analysis doesn’t care about the order of tokens. Just so long as there are valid tokens.

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

* ADJECTIVE

Tokens

{Purple, Spotted, Old}

Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex (software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Parsing is the first step in a compiler

* How do we parse a sentence in English?

My My Quietly My My My

What happens here?

Parsing is the first step in a compiler

* How do we parse a sentence in English?

My My Quietly My My

v

ARTICLE | | ARTICLE| |?

What happens here?

Scanner error here. Many scanners stop and report the error location

Parsing is the first step in a compiler

* How do we parse a sentence in English?

My My Quietly My My

- \ T

ARTICLE | | ARTICLE ? ARTICLE ARTICLE

What happens here?

Scanner error here. Some scanners try to recover and keep going (difficult, and requires ad hoc rules)

Scanning vs. Parsing

A scanner should make sure that the sequence of lexemes is valid, e.g. the scanner should make sure
two numbers are separated by a valid operator.

O True

O False

False! The order of tokens will be checked by the parser later on!

Scanning a simple PL statement

How many lexemes do you think the following statement should have?
for (inti=0;i<=5; i++)

What lexemes do you think they should be?

Scanning a simple PL statement

for (int 1 = 0; 1 <= 5; 1i++)

Scanning a simple PL statement

for (int 1 = 0; 1 <= 5; 1i++)

[(uforn), (PAR, ll(ll), (ID, ”int"), (ID, uin ,
(ASSIGN “="), (NUM, “0"), (SEMI, “;"), (ID, “i"),
(11<_11), (NUM, 1151/), (SEMI, u;n), (ID, uin),
(INCR, u++n), (PAR, H)")]

Scanning a simple PL statement

for (int 1 = 0; 1 <= 5; 1i++)

[(I “for"), (PAR, “("), (ID, *“int"),
(ASSIGN “H—1u) , (NUM, uon) , (SEMI, " : ") ,
(u<_u>, (NUM, 1151/), (SEMI, u;n)’
(

INCR ll++ll) ; (PAR, ')) n)]

Why not: ”"<“ and “=" separately?

(ID,
(ID,
(ID,

H- e

-

-
-

-
-

-
-

Scanning a simple PL statement

for (int 1 =

[
ASSIGN

Should these be the same token?

(I “for"), (PAR,
(ll=ll) , (NUM,
(ll<_ll), (NUM,
(INCR, “++7), (PAR,

14 (a4) ,
IIOII) ,
IISII) ,

“)") 1]

0; 1 <= 5; 1i++)

(ID, “int”), (ID,
(SEMI, “;"), (ID,
(SEMI, “;"), (ID,

M- e

-

-
-

-
-

-
-

[

(1
(
(L
(

Scanning a simple PL statement

for (int 1 = 0; 1 <= 5; 1i++)

“for"), (LPAR, “("), (ID, “int"),
ASSIGN ll=ll) , (NUM, IIOII) , (SEMI, II;II) ,

ll<_ll), (NUM, 115"), (SEMI, II;II),
INCR, “++"), (RPAR, “)")]

Should these be the same token? Probably not

(ID,
(1D,
(1D,

H- -

-

-
-

-
-

-
-

Review

Naive implementation

* A scanner that implements

ID = [characters]
NUM = [numbers]
ASSIGN = "="

PLUS = M4

MULT = 0V

IGNORE = [“ “]

Naive implementation

crqe class StringStream:
BU”dmg block: def __init_ (self, input_string):
self.string = input_string

def is_empty(self):
return len(self.string) ==

def peek_char(self):
if not self.is_empty():
return self.string[0]
return None

def eat_char(self):
self.string = self.string[1:]

Naive implementation

First step in implementing the scanner

class NaiveScanner:

def __init_ (self, input_string):
self.ss = StringStream(input_string) ID = [characters]
NUM = [numbers]
def token(self): ASSTGN = "=#
while self.ss.peek_char() in IGNORE: PLUS = Y7
self.ss.eat_char() MULT = uxn
if self.ss.is_empty(): IGNORE = []

return None

Naive implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):

1f self.ss.peek_char() == "+": D = [characters]
value = self.ss.peek_char() _
self.ss.eat_char() NUM = [numbers]
return ("ADD", value) ASSIGN = "=
PLUS = 4“4
if self.ss.peek_char() == "x": MULT — uxw
value = self.ss.peek_char() IGNORE = ["]

self.ss.eat_char()
return ("MULT", value)

Naive implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):

if self.ss.peek_char() in NUMS: 1D = [characters]
while self.ss.peek_char() in NUMS: NUM = [numbers]
+= self.ss.peek_char() ASSIGN = "=
self.ss.eat_char() PLUS = Huqn

return ("NUM", value)
MULT = “%"

IGNORE = [“ “]

Schedule

* Naive Parser discussion

* Regular expressions

Code demo

Shortcomings of Naive scanner

* Any thoughts?

Shortcomings of Naive scanner

* |IDs with numbers in them?
*x1, yl1, etc.
* how would you solve?

* Numbers with a decimal point in them?
*4.5, 9999.99998
* how would you solve this?

* Two character operators:
o ++, +=
* how would you solve this?

Shortcomings of Naive scanner

* |IDs with numbers in them?
*x1, yl1, etc.
* how would you solve?

* Numbers with a decimal point in them?

*4.5, 9999.99998
* how would you solve this?

* Two character operators:
o ++, +=
* how would you solve this?

Things get really hacky
really quickly!

Creates

a bad design that is
not easily extended
or maintained

How do we solve this?

A new token definition language:
* Regular expressions

* Tokens will be defined using regular
expressions

* Scanners can then utilize regular expression
matchers

Benefits:

* Extensible design

e easy to add new tokens, modify existing
definitions

e Modular

e Scanner can utilize common regex libraries

Cons:

How do we solve this?

A new token definition language:
* Regular expressions

* Tokens will be defined using regular
expressions

* Scanners can then utilize regular expression
matchers

Benefits:

* Extensible design

e easy to add new tokens, modify existing
definitions

e Modular

e Scanner can utilize common regex libraries

Cons:

* Token definitions are restricted to regular
languages

* Potentially slower

e Regular expression matchers are complicated

Schedule

* Naive Parser:
e Code demo and discussion

* Regular expressions

Regular expressions

Some theory:

* Given a language L, a string s is either part of that language or not
* Integers are a language: “5”, “6”, “-7” is in the language. “abc” is not.

* Languages are grouped into families depending on how “hard” it is to
determine if a string is part of that language.

Regular expressions

recursively enumerable

context-sensitive

context-free

image source: wikipedia

The simplest languages are regular. We will
use regular languages as our token language.

We will use the next level: context-free, as the
language for our parser.

Higher levels are interesting, but not as useful
in compilers. Why?

Regular expressions

recursively enumerable

context-sensitive

context-free

image source: wikipedia

The simplest languages are regular. We will
use regular languages as our token language.

We will use the next level: context-free, as the
language for our parser.

Higher levels are interesting, but not as useful
in compilers. Why?

Because deciding if a string is in a recursively
enumerable language is undecidable.

Regular expressions

What is a regular language?

recursively enumerable

context-sensitive

context-free

image source: wikipedia

Regular expressions

What is a regular language?

recursively enumerable

For this class: A regular language is a language
that can be expressed as a reqular expression.

context-sensitive

context-free

image source: wikipedia

Regular expressions

What is a regular language?

recursively enumerable

For this class: A regular language is a language
that can be expressed as a reqular expression.

context-sensitive What is a regular expression?

context-free

image source: wikipedia

Regular expressions

* We will define regular expressions (RE) recursively
* We will show examples at each step.

* And show to match them in Python
* A string matches an RE if it belongs to the reqular language defined by the RE
* Python has a great RE matching library

Regular expressions

import the library
import re

pattern is a string representing the RE
the function reports whether string matches RE
re.fullmatch(pattern, string)

Regular expressions

* We will define regular expressions (RE) recursively
* Like any recursive function, we can start with the base case:

a regular expression can be a single character or the empty string

Regular expressions

* We will define regular expressions (RE) recursively

* Like any recursive function, we can start with the base case:

a regular expression can be a single character or the empty string

Example:

ASSIGN
PLUS

H—=u

ll+ll

Python:
import re
re.fullmatch(“=", “=")

re.fullmatch(”“+", “+")

Regular expressions

* When we define regular expressions, some characters are special.

* They are operators in the regular expression language
* If we want to use them as a character, then we need to “escape them” with a \

* “+” happens to be one of those characters

https://riptutorial.com/regex/example/15848/what-characters-need-to-be-escaped-

Python:
import re
re.fullmatch(“=*, *“=")

re.fullmatch(“\+", “+")

https://riptutorial.com/regex/example/15848/what-characters-need-to-be-escaped-

Regular expressions

* We will define regular expressions (RE) recursively
* Like any recursive function, we can start with the base case:

a regular expression can be a single character or the empty string

Python:

import re Not super useful for us,
re.fullmatch(“*“, “*) but useful for the theory

Regular expressions

* First recursive case: concatenation

* Two REs can be concatenated by simply writing them in sequence:
° REl — ”all’ REZ — ((b”
* concatenated itis: RE12 = “ab”

 This allows us to build words

Example: Python:
FOR = “for” import re
WHILE = "while” re.fullmatch(“for”, *“for")

re.fullmatch(“a\+b”, “a+b")

Can we define these tokens yet?

 ARTICLE =({The, A, My, Your}

* NOUN ={Dog, Car, Computer}
 VERB =|{Ran, Crashed, Accelerated}
 ADJECTIVE | =|{Purple, Spotted, Old}

Tokens Tokens Definitions

Can we define these tokens yet? No, we need one more operator

 ARTICLE =({The, A, My, Your}

* NOUN ={Dog, Car, Computer}
 VERB =|{Ran, Crashed, Accelerated}
 ADJECTIVE | =|{Purple, Spotted, Old}

Tokens Tokens Definitions

Regular expressions

* Second recursive operator: choice (sometimes called "union”, or “or”

* Two REs can be choiced together using the “|” operator
e RE1=“a”, RE2 = “b”
* The choiceis: RE1|2 = “a|b”
* Matches either

Example: Python:
OP = “x |44 import re
CMP = “==|<=|>=" re.fullmatch(“*|\+“, Uty

re.fullmatch(“==|<=|>=", “==")

Can we define these tokens yet?

 ARTICLE =({The, A, My, Your}

* NOUN ={Dog, Car, Computer}
 VERB =|{Ran, Crashed, Accelerated}
 ADJECTIVE | =|{Purple, Spotted, Old}

Tokens Tokens Definitions

Can we define these tokens yet? Yes!

* ARTICLE =| “The|A|Mine|Your”

* NOUN =|“Dog|Car|Computer”

* VERB =| “Ran|Crashed|Accelerated”
 ADJECTIVE | =|“Purple|Spotted|Old”

Tokens Tokens Definitions

Can we define these tokens yet?

ID = [characters]
NUM = [numbers]
ASSIGN = "="

PLUS = “+"

MULT = “*~

IGNORE = [“ *“]

Can we define these tokens yet? No!

ID = [characters]
NUM = [numbers]
ASSIGN = "="

PLUS = M4

MULT = M0V

IGNORE = [“ “]

Regular expressions

* Last recursive operator: Repeat

e Unary operator: *
* RE1=“a”
* Repeat RE1 zero or more times: "a*”

Example: Python:

RE1 = ug*u import re

RE?2 = ug*|b*" re.fullmatch(“a*|b*”, “aaa")
RE3 = "a|b* re.fullmatch(“a*|b*", “")

Regular expressions

* Last recursive operator: Repeat

e Unary operator: *
* RE1=“a”
* Repeat RE1 zero or more times: "a*”

Example: Python:

RE1 = “ax" import re

RE2 = “a*|b*" re.fullmatch(“a*|b*”, “aaa")
RE3 = "a|b*” re.fullmatch(“a|b*", “")

Precidence?

Regular expressions

* Lets make an RE for binary numbers

e Lets make an RE for decimal numbers

Regular expressions

* These are the theoretical foundational operators.
* Most languages give syntactic sugar to make common cases easier

* Most languages also break the theory

* Perl regexes are extremely complicated
e https://www.perlmonks.org/?node id=809842

* Python regexes (with recursion) are can capture context free languages

e https://www.npopov.com/2012/06/15/The-true-power-of-regular-
expressions.html#matching-context-free-languages

https://www.perlmonks.org/?node_id=809842
https://www.npopov.com/2012/06/15/The-true-power-of-regular-expressions.html
https://www.npopov.com/2012/06/15/The-true-power-of-regular-expressions.html

Regular expressions

e strict repeat operator: +

* one or more repeats (the * operator is 0 or more repeats)
e derivation: “r+” = “rr*”

* Let’s revisit binary numbers and decimal numbers

“0/1)+"

Regular expressions

* Ranges:
* digits [0-9]
 alpha [a-z], [A-Z]

 Derivation: [0-9] ="1|2|3]4|5|6|7|8]9”

* Lets try C style IDs:

Regular expressions

* Ranges:
* digits [0-9]
 alpha [a-z], [A-Z]

 Derivation: [0-9] ="1|2|3]4|5|6|7|8]9”

* Lets try C style IDs: “[a-zA-Z][0-9a-zA-Z]*”

Regular expressions

» optional operator ?
* optional characters

° llr?ll — o | r)l
* Example: “ab?”

* Let’s do simple floating point numbers

Regular expressions

» optional operator ?
* optional characters

° llr?ll — o | r)l
* Example: “ab?”

* Let’s do simple floating point numbers: “[0-9]+(\.[0-9]+)?”

Regular expressions

e any character

* example using email (this is probably too general!)

Regular expressions

e any character
* example using email (this is probably too general!)

o " *@.*\.com”

Using REs
e What if we want either the domain or user name from the email?

* \We can use groups!
e use ()s to deliminate groups

* "(.¥)@(.*\.com)”

* Index the resulting object with [1] and [2] to get to the user name and
domain respectively

Using REs

* yOou can give groups id names rather than using indices

* “(?P<name>.+)@(?P<domain>.+\.com)”

REs are good for?

* Scanning large amounts of documents quickly, looking for:
* Websites
e Email
* Profiling numbers

e Variable usages
* What else?

RE examples

e What can REs not do?

* Nested structures, such as parathesis matching:
* Try doing arithmetic expressions
* You will not be able to match ()s

 Classical example: REs cannot capture same number of repeats:
* A{N}B{N}

* REs cannot parse HTML!!!
* One of the most upvoted answers on stackoverflow!

* https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-
contained-tags/1732454#1732454

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454

Let’s write our tokens as regular expressions

* For our simple programming language

ID = [characters]
NUM = [numbers]
ASSIGN = "=

PLUS = M4

MULT = 0V

IGNORE = [“ “]

How to implement an RE matcher?

e Overview: first you have to parse the RE...
* Chicken and egg problem

* The language of REs is not a regular language. It is context sensitive (because
it has ()s)

* But once you can parse the RE, there are several options

How to implement an RE matcher?

* parsing with derivatives
* We discuss this in CSE211
e Elegant solution, but difficult to make fast

* Convert to an automata
e Learn more about this CSE103
* A cool website
* https://ivanzuzak.info/noam/webapps/fsm simulator/

https://ivanzuzak.info/noam/webapps/fsm_simulator/

How to use REs in a scanner implementation?

* \WWe will discuss next class

* See you on Wednesday!

