
CSE110A: Compilers
May 6, 2022

Topics:
• more 3-address code
• converting AST to 3-address code
• converting control flow statements to 3-

address code

..

.. ..

....

...

... ...

...

AST

CFG

store i32 0, ptr %2
%3 = load i32, ptr %1
%4 = add nsw i32 %3, 1,
store i32 %4, ptr %1
%5 = load i32, ptr %2

3 address code

Announcements

• HW 1 grades are released
• You have until Monday to let us know about any issues

• Midterm is out
• There is a piazza post with clarifications
• No late midterms will be accepted

• My advice is to try to turn it in by tonight
• that way if there are any issues, you have until Friday to turn it in

• As always, no help guaranteed outside of business hours
• After 5 PM on Friday, you are on your own

Announcements

• Expect HW 3 on Monday by midnight
• It will be similar to HW 2 in terms of workload and conceptual depth
• I suggest you start early
• HW 2 was difficult, but most of our office hours had slots in the first week it

was assigned!

• It will build on the parser of HW 2
• You can use your own with some small modifications
• or we will provide one

• The idea is that you should be able to plug in parts from all the homeworks to
have one big project at the end!

Announcements

• Schedule update
• We will likely need 1 or 2 more days of the IR module
• So we will start the optimization module next Wednesday or Friday
• I’ll adjust the schedule accordingly

• With homeworks:
• Originally scheduled to have 5 homeworks but due to time constraints, we

will likely only have 4 homeworks.
• It’s the first time I’m teaching this class. All of the homeworks, exams, and

lectures are new, so we’ve had to adapt.
• Apologies to those who want more compiler homeworks. You can always take

CSE211 if you are interested J

Quiz

Quiz

Discussion

• Type inference:
• Rules about how types convert between each other implicitly
• Examples:

• 2 + 3.0
• int x = 6.0
• 7.0 < 6.0

• Assigns a type to each expression

• Type checking:
• Happens during type inference.
• If a type cannot be given to an expression then it raises an error
• Examples?

Quiz

Discussion
What is the in order traversal order?

Discussion

2

1 4

What is the in order traversal order?

if this was an AST for: “2 + (3.0 + 5.0)”

AST<2, int>

AST<+, ?>

3 5

AST<3.0, float> AST<5.0, float>

AST<+, ?>

we cannot evaluate 2 before 4!

Discussion
What is the post order traversal order?

if this was an AST for: “2 + (3.0 + 5.0)”

AST<2, int>

AST<+, ?>

AST<3.0, float> AST<5.0, float>

AST<+, ?>

Discussion

5

1 4

What is the post order traversal order?

if this was an AST for: “2 + (3.0 + 5.0)”

AST<2, int>

AST<+, ?>

2 3

AST<3.0, float> AST<5.0, float>

AST<+, ?>

Now we can do type inference

Discussion

5

1 4

What is the post order traversal order?

if this was an AST for: “2 + (&c + 5.0)”

AST<2, int>

AST<+, ?>

2 3

AST<&c, ptr> AST<5.0, float>

AST<+, ?>

How does this change things?

Discussion

Does this express pass C’s type checking?

int *c;
int x;
c + x = 6.0;

Example

Quiz

Discussion

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

store i32 0, ptr %2
%3 = load i32, ptr %1
%4 = add nsw i32 %3, 1,
store i32 %4, ptr %1
%5 = load i32, ptr %2

AST 3 - address code

Much closer to machine code
Much closer to parse tree

Different IRs

• Several types of linear code:
• 1 address code
• 2 address code
• 3 address code

used for stack machines, some ideas are used in the JVM and
web assembly. Creates compact code

push 2
push 4
multiply
push 8
subtract

Execute this code as an exercise

Different IRs

• Several types of linear code:
• 1 address code
• 2 address code
• 3 address code

used for stack machines, some ideas are used in the JVM and
web assembly. Creates compact code

Stack machine can be a useful IR, but I’m not sure any machine that actually uses it.

Jeremy mentioned that the original Nintendo processor used 2-address code for its ISA.
In those cases the destination registration is built into the instruction

Quiz

Discussion

r0 ← x + y;
r1 ← 5 * 7;
r2 ← r0 / r1

book
vr0 = addi(x,y);
vr1 = multi(5,7);
vr2 = divi(vr0,vr1);

this class
%8 = add nsw i32 %6, %7

%11 = mul nsw i32 5, 7

LLVM IR

%15 = sdiv i32 %13, %14

It depends

Your 3-address code should be close enough to make the final translation to ISA easier

But it should be general enough to be able to target many backends.

Discussion

r0 ← x + y;
r1 ← 5 * 7;
r2 ← r0 / r1

book
vr0 = addi(x,y);
vr1 = multi(5,7);
vr2 = divi(vr0,vr1);

this class
%8 = add nsw i32 %6, %7

%11 = mul nsw i32 5, 7

LLVM IR

%15 = sdiv i32 %13, %14

It depends

Your 3-address code should be close enough to make the final translation to ISA easier

But it should be general enough to be able to target many backends.

Types are a consideration here

Discussion

r0 ← x + y;
r1 ← 5 * 7;
r2 ← r0 / r1

book
vr0 = addi(x,y);
vr1 = multi(5,7);
vr2 = divi(vr0,vr1);

this class
%8 = add nsw i32 %6, %7

%11 = mul nsw i32 5, 7

LLVM IR

%15 = sdiv i32 %13, %14

It depends

Your 3-address code should be close enough to make the final translation to ISA easier

But it should be general enough to be able to target many backends.

Types are a consideration here
Virtual registers are a consideration here
e.g., how many, if they are typed, etc.

Review

• We went over some of this stuff pretty quickly last time

3-address code

• We will call our code Class-IR

vr0 = addi(x,y);
vr1 = multi(5,7);
vr2 = divi(vr0,vr1);

Example:

Virtual registers

typed instructions

3-address code

label0:
vr0 = addi(x,y);
vr1 = multi(5,7);
vr2 = divi(vr0,vr1);
branch label0;
vr3 = ...
vr4 = ...

What does this code do?

Control flow in 3 address code
• Similar to an ISA:
• We have labels
• and branch instructions

• branch x - branch unconditionally to label z
• bne x,y,z - branch to z if x and y are not equal

3-address code

label0:
vr0 = addi(vr0,-1);

bne vr2 0 label0;
vr3 = ...
vr4 = ...

What does this code do?

Control flow in 3 address code
• Similar to an ISA:
• We have labels
• and branch instructions

• branch x - branch unconditionally to label z
• bne x,y,z - branch to z if x and y are not equal

Class-IR

• A deeper dive

• You will need to be familiar with this language for the next two
homeworks

• It is untyped
• checks your type inference

• There is a slightly modified version of Class-IR that can compile and
execute in C++, which is how you will test it

Class-IR

Inputs/outputs: 32-bit typed inputs
e.g.: int x, int y, float z

Types: 32-bit untyped virtual register
given as vrX where X is an integer:
e.g. vr0, vr1, vr2, vr3 ...

we will assume input/output names are disjoint from virtual register
names

Class-IR

binary operators:
dst = operation(op0, op1);

operations can be one of:
[add, sub, mult, div, eq, lt]

each operation is followed by an i or f, which
specifies how the bits in the registers are
interpreted

Class-IR

binary operators:
dst = operation(op0, op1);

operations can be one of:
[add, sub, mult, div, eq, lt]

each operation is followed by an i or f, which
specifies how the bits in the registers are
interpreted

this gets us closer to assembly

Class-IR

binary operators:
dst = operation(op0, op1);

operations can be one of:
[add, sub, mult, div, eq, lt]

each operation is followed by an i or f, which
specifies how the bits in the registers are
interpreted

We should have an AST binary operator for
each of these. They should also be close
to your production rules in the grammar.

We want to make translations as easy as
possible!

Class-IR

binary operators:
dst = operation(op0, op1);

operations can be one of:
[add, sub, mult, div, eq, lt]

all of dst, op0, and op1 must be untyped virtual
registers.

Class-IR

binary operators:
dst = operation(op0, op1);

Examples:

vr0 = addi(vr1, vr2);
vr3 = subf(vr4, vr5);

x = multf(vr0, vr1); not allowed!
vr0 = addi(vr1, 1); not allowed!

We’ll talk about how to
do this using other
instructions

Class-IR

Control flow
branch(label);
• branches unconditionally to the label

bne(op0, op1, label)
• if op0 is not equal to op1 then branch to label
• operands must be virtual registers!

beq(op0, op1, label)
• Same as bne except it is for equal

Class-IR

Assignment
vr0 = vr1

one virtual register can be assigned to another

Class-IR

Assignment
vr0 = vr1

one virtual register can be assigned to another

Examples:
vr0 = 1; not allowed
vr1 = x; not allowed

Class-IR

unary conversion operators:
dst = operation(op0);

operations can be one of:
[vr_int2float, vr_float2int]

converts the bits in a virtual register from one
type to another. op0 and dst must be a virtual
register!

Class-IR

unary conversion operators:
dst = operation(op0);

Examples:

vr0 = vr_int2float(vr1);
vr2 = vr_float2int(1.0); not allowed!

Class-IR

unary get typed data
dst = operation(op0);

operations are: [vr2int, vr2float]

Example:

x = vr2int(vr1);
y = vr2float(vr3);

Given inputs: int x and float y

Class-IR

unary get untyped register
dst = operation(op0);

operations are: [int2vr, float2vr]

Example:

rv1 = int2vr(x);
rv2 = float2vr(2.0);

Given inputs: int x and float y

Example

adding the values 1 - 9 in to an input/output variable: int x

Example
adding the values 1 - 9 in to an input/output variable: int x

vr0 = int2vr(1);
vr1 = int2vr(1);
vr2 = int2vr(10);

loop_start:
vr3 = lti(vr0, vr2);
bne(vr3, vr1, end_label);
vr4 = int2vr(x);
vr5 = addi(vr4,r0);
x = vr2int(vr5);
vr0 = addi(vr0, vr1);
branch(loop_start);

end_label:

Converting AST into Class-IR

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

AST<int2float, float>

After type inference

Converting AST into Class-IR

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

After type inference

We will start by adding a new
member to each AST node:

A virtual register

Each node needs a distinct virtual
register

class ASTNode():
def __init__(self):

self.node_type = None
self.vr = None
pass

def set_vr(self, r):
self.vr = r

def get_vr(self):
return self.vr

Our base AST Node needs a virtual register

A reminder on where we are with our code

class VRAllocator():
def __init__(self):

self.count = 0

def get_new_register(self):
vr = "vr" + str(self.count)
self.count += 1
return vr

A simple class that can allocate virtual registers

class ASTNode():
def __init__(self):

self.node_type = None
self.vr = None
pass

def set_vr(self, r):
self.vr = r

def get_vr(self):
return self.vr

Our base AST Node needs a virtual register

A reminder on where we are with our code

class VRAllocator():
def __init__(self):

self.count = 0

def get_new_register(self):
vr = "vr" + str(self.count)
self.count += 1
return vr

A simple class that can allocate virtual registers

To provide each node in the AST a virtual node,
simply traverse the tree (any order), get a new
virtual register, and set the virtual register

Converting AST into Class-IR

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

After type inference

Next each AST node needs
to know how to print a
3 address instruction

Converting AST into Class-IR

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

After type inference

Next each AST node needs
to know how to print a
3 address instruction

Let’s look at add

class ASTPlusNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

return a string of the three address instruction
that this node encodes
def three_addr_code(self):

??

class ASTPlusNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

return a string of the three address instruction
that this node encodes
def three_addr_code(self):

??

return "%s = %s(%s,%s);" %
(self.vr, self.get_op(), self.l_child.vr, self.r_child.vr)

class ASTPlusNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

return a string of the three address instruction
that this node encodes
def three_addr_code(self):

??

return "%s = %s(%s,%s);" %
(self.vr, self.get_op(), self.l_child.vr, self.r_child.vr)

What is this one?

return "%s = %s(%s,%s);" %
(self.vr, self.get_op(), self.l_child.vr, self.r_child.vr)

What is this one?

def get_op(self):
if self.node_type is Types.INT:

return "addi"
else:

return "addf"

return "%s = %s(%s,%s);" %
(self.vr, self.get_op(), self.l_child.vr, self.r_child.vr)

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

def get_op(self):
if self.node_type is Types.INT:

return "addi"
else:

return "addf"

return "%s = %s(%s,%s);" %
(self.vr, self.get_op(), self.l_child.vr, self.r_child.vr)

vr2 = addi(vr0,vr1);

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

def get_op(self):
if self.node_type is Types.INT:

return "addi"
else:

return "addf"

Converting AST into Class-IR

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

After type inference

Next each AST node needs
to know how to print a
3 address instruction

Let’s look at a leaf

class ASTIDNode(ASTLeafNode):
def __init__(self, value, value_type):

super().__init__(value)
self.set_type(value_type)

return a string of the three address instruction
that this node encodes
def three_addr_code(self):

??

return "%s = %s(%s);" %
(self.vr, self.get_op(), self.value)

class ASTIDNode(ASTLeafNode):
def __init__(self, value, value_type):

super().__init__(value)
self.set_type(value_type)

return a string of the three address instruction
that this node encodes
def three_addr_code(self):

??

return "%s = %s(%s);" %
(self.vr, self.get_op(), self.value)

def get_op(self):
if self.node_type is Types.INT:

return ”int2vr"
else:

return ”float2vr"

return "%s = %s(%s);" %
(self.vr, self.get_op(), self.value)

def get_op(self):
if self.node_type is Types.INT:

return ”int2vr"
else:

return ”float2vr"

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

we can get 3 address instructions for each node

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

What now?
We can create a 3 address
program doing a post-order
traversal

int x;
int y;
float w;
w = x + y + 5.5

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);

vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

We can create a 3 address
program doing a post-order
traversal

Final program

How does this actually look in code?

Each AST node (expression) needs a function:

• linearize_expr()

Gives a list of 3 address instructions for the expression

As always, we’re going to use recursion

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

How do you linearize a leaf node?
class ASTIDNode(ASTLeafNode):

def __init__(self, value, value_type):
super().__init__(value)
self.set_type(value_type)

def linearize_expr(self):
???

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

How do you linearize a leaf node?
class ASTIDNode(ASTLeafNode):

def __init__(self, value, value_type):
super().__init__(value)
self.set_type(value_type)

def linearize_expr(self):
return [self.three_addr_code()]

It needs to return a list, so we just put the leaf’s
instruction in the list

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

How do you linearize a non leaf node?

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

How do you linearize a non leaf node?

1. Linearize the children
2. concatenate the lists
3. append your 3 address instruction to the end.

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

vr4 = float2vr(5.5);

vr1 = int2vr(y);vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

How do you linearize a non leaf node?

1. Linearize the children
2. concatenate the lists
3. append your 3 address instruction to the end.

do example in class

Converting ASTs into 3 address code summary

• Each node gets a virtual register
• Each node needs to implement a function to get a three address

instruction
• Each node needs a linearize function

Backing up to an even higher level

• We know how to parse an expression: parse_expr

• We know how to create an AST during parsing

• We know how to do type inference on an AST

• We know how to convert a type-safe AST into 3 address code

Backing up to an even higher level

• We can now define what our parser will return: A list of 3 address
code

• We can get 3 address code from parsing expressions, now we just
need to get it from statements

From our grammar

statement := declaration_statement
| assignment_statement
| if_else statement
| block_statement
| for_loop_statement

Our top down parser should have a function called parse_statement

This should return a list of 3 address code instructions that encode the statment

From our grammar

statement := declaration_statement
| assignment_statement
| if_else statement
| block_statement
| for_loop_statement

Our top down parser should have a function called parse_statement

This should return a list of 3 address code instructions that encode the statment

assignment_statement_base := ID ASSIGN expr

int x;
int y;
float w;
w = x + y + 5.5

{
id_name = to_match[1]
eat(“ID”);
eat(“ASSIGN”);
ast = parse_expr()
type_inference(ast)
assign_registers(ast)
program = ast.linearize()
new_inst = “%s = %s” % ?
return program + [new_inst]

}

assignment_statement_base := ID ASSIGN expr

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

int x;
int y;
float w;
w = x + y + 5.5

{
id_name = to_match[1]
eat(“ID”);
eat(“ASSIGN”);
ast = parse_expr()
type_inference(ast)
assign_registers(ast)
program = ast.linearize()
new_inst = “%s = %s” % ?
return program + [new_inst]

}

assignment_statement_base := ID ASSIGN expr

AST<x, int, vr0>

AST<+,int, vr2>

AST<y, int, vr1>

AST<+,float, vr5>

AST<5.5, float, vr4>

AST<int2float, float, vr3>

int x;
int y;
float w;
w = x + y + 5.5

{
id_name = to_match[1]
eat(“ID”);
eat(“ASSIGN”);
ast = parse_expr()
type_inference(ast)
assign_registers(ast)
program = ast.linearize()
new_inst = “%s = %s” % (id_name, ast.vr)
return program + [new_inst]

}

assignment_statement_base := ID ASSIGN expr

{
id_name = to_match[1]
eat(“ID”);
eat(“ASSIGN”);
ast = parse_expr()
type_inference(ast)
assign_registers(ast)
program = ast.linearize()
new_inst = “%s = %s” % (id_name, ast.vr)
return program + [new_inst]

}

int x;
int y;
float w;
w = x + y + 5.5

vr4 = float2vr(5.5);

vr1 = int2vr(y);

vr0 = int2vr(x);

vr2 = addi(vr0,vr1);

vr3 = vr_int2float(vr2);

vr5 = addf(vr3,vr4);

program

w = vr5

new inst

assignment_statement_base := ID ASSIGN expr

{
id_name = to_match[1]
eat(“ID”);
eat(“ASSIGN”);
ast = parse_expr()
type_inference(ast)
assign_registers(ast)
program = ast.linearize()
new_inst = “%s = %s” % (id_name, ast.vr)
return program + [new_inst]

}

int x;
int y;
float w;
w = x + y + 5.5

What are we missing here?

1. If the type of ID doesn’t match
the type of the ast, then the ast
needs to be converted.

2. ID should be checked if it is
an input/output variable. which
means it will need to be handled
differently.

3. You need to check the ID in the
symbol table

assignment_statement_base := ID ASSIGN expr

{
id_name = to_match[1]
eat(“ID”);
eat(“ASSIGN”);
ast = parse_expr()
type_inference(ast)
assign_registers(ast)
program = ast.linearize()
new_inst = “%s = %s” % (id_name, ast.vr)
return program + [new_inst]

}

int x;
int y;
float w;
w = x + y + 5.5

What are we missing here?

1. If the type of ID doesn’t match
the type of the ast, then the ast
needs to be converted.

2. ID should be checked if it is
an input/output variable. which
means it will need to be handled
differently.

3. You need to check the ID in the
symbol table

It can get a little messy

statement := declaration_statement
| assignment_statement
| if_else_statement
| block_statement
| for_loop_statement

if_else_statement := IF LPAR expr RPAR statement ELSE statement

{
eat(“IF”);
eat(“LPAR”);
program0 = # Get program from expr
eat(“RPAR”);
program1 = # Get program from statement
eat(“ELSE”)
program2 = # Get program from statement
...

}

if_else_statement := IF LPAR expr RPAR statement ELSE statement

{
eat(“IF”);
eat(“LPAR”);
program0 = # Get program from expr
eat(“RPAR”);
program1 = # Get program from statement
eat(“ELSE”)
program2 = # Get program from statement
...

}

if (program0) {
program1

}
else {
program2

}

We need to convert this
to 3 address code

beq (program0, 0, else_label)
program1;
branch end_label;

else_label:
program2

end_label:

See everyone on Monday

• We’ll discuss more about turning statements into 3 address code

