
CSE110A: Compilers
May 2, 2022

Topics:
• ASTs
• type checking

..

.. ..

....

...

... ...

...

AST

CFG

store i32 0, ptr %2
%3 = load i32, ptr %1
%4 = add nsw i32 %3, 1,
store i32 %4, ptr %1
%5 = load i32, ptr %2

3 address code

Announcements

• HW 1 grades are released
• Let us know in 1 week if there are any issues
• Please let us know through a private piazza post
• Do not ask TAs or Tutors directly about changing your grade

• Midterm is posted
• I have updated the document once (as documented in the announcement)
• I have started a piazza note with clarifications

Announcements

• Midterm rules
• Ask any questions as a private piazza post
• Do not discuss any part of it with classmates (e.g. tests, concepts, or approaches)
• Do not ask questions online or google for exact questions

• And if you happen to stumble across answers online, please let me know!
• Document your answers so we can give as much partial credit as possible!
• No late midterms will be accepted, so please plan ahead!

Announcements

• HW 2 is due today
• Please try to get it in on time!

• It is a difficult homework; as such I will provide a life preserve
• If you submit by the deadline you get 10 extra points

• that can count towards 100% (but not over 100%)
• At midnight, we will release a solution to part 1:

• A grammar along with a First+ set
• You can use this grammar to help you with part 2 and part 3

• Late penalties still apply. No extra points

• The intent is this:
• If you got a decent solution turned in, you can be done with this homework as planned
• If you were completely stuck, you can use the grammar and first+ sets to submit something in the next few days

• We will only grade one solution and we will grade the latest solution submitted

Homework 2 clarifications

• What information for each variable does the symbol table hold?
• For this assignment, nothing! It just keeps track of which variables have been

declared and in which scope.

• For the next homework we will add type information to the symbol table

Quiz

Quiz

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<->

AST<->

AST<5> AST<4>

AST<3>

How do we get to the desired parse tree?

class ASTNode():
def __init__(self):

pass

class ASTLeafNode(ASTNode):
def __init__(self, value):

self.value = value

class ASTNumNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)

class ASTIDNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)

class ASTBinOpNode(ASTNode):
def __init__(self, l_child, r_child):

self.l_child = l_child
self.r_child = r_child

class ASTPlusNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

class ASTMultNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

Quiz

Name Productions Production action

expr : expr PLUS term
| term

{return ASTAddNode($1,$3)}
{return $1}

term : term TIMES factor
| factor

{return ASTMultNode($1,$3)}
{return $1}

factor : LPAR expr RPAR
| NUM
| ID

{return $2}
{return ASTNumNode($1)}
{return ASTIDNode($1)}

expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

Name Productions Production action

expr : expr PLUS term
| term

{return ASTAddNode($1,$3)}
{return $1}

term : term TIMES factor
| factor

{return ASTMultNode($1,$3)}
{return $1}

factor : LPAR expr RPAR
| NUM
| ID

{return $2}
{return ASTNumNode($1)}
{return ASTIDNode($1)}

expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

AST<*>

AST<+>

AST<1> AST<5>

AST<6>

Quiz

Name Productions Production action

expr : expr PLUS term
| term

{return ASTAddNode($1,$3)}
{return $1}

term : term TIMES factor
| factor

{return ASTMultNode($1,$3)}
{return $1}

factor : LPAR expr RPAR
| NUM
| ID

{return $2}
{return ASTNumNode($1)}
{return ASTIDNode($1)}

expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

AST<*>

AST<+>

AST<1> AST<5>

AST<6>

Name Productions Production action

expr : expr PLUS term
| term

{return ASTAddNode($1,$3)}
{return $1}

term : term TIMES factor
| factor

{return ASTMultNode($1,$3)}
{return $1}

factor : LPAR expr RPAR
| NUM
| ID

{return $2}
{return ASTNumNode($1)}
{return ASTIDNode($1)}

expr

term

<LPAR, “(”>

factor

expr

input: (1+x)*6

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<ID, “x”>

<TIMES, “*”>

<NUM, “6”>

factorterm

AST<*>

AST<+>

AST<1> AST<x>

AST<6>

Quiz

expr

term

<LPAR, “(”>

factor

expr

(1+x)*sqrt(x)

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<ID, “x”>

<TIMES, “*”>

<?>

factorterm

AST<*>

AST<+>

AST<1> AST<x>

AST<?>

Our language doesn’t have function calls,
but what do we think?

Quiz

Review

The quiz was a good review of the material

New material

• Type systems
• Evaluating an AST
• Type systems
• Type checking

Evaluate an AST by doing a post order traversal

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

5 + 4 + 3

5

Expr

Expr2

+ Expr24

+ 3 Expr2

AST<5>

AST<+>

AST<5> AST<4> Parse trees cannot always be evaluated
in post-order. An AST should always be

AST<+>

AST<3>

parse tree

AST

Evaluate an AST by doing a post order traversal

x + y + z

AST<x>

AST<+>

AST<y>

What if you cannot evaluate it?
What else might you do?

AST<+>

AST<z>

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

Evaluate an AST by doing a post order traversal

int x;
int y;
float z;
float w;
w = x + y + z

AST<x>

AST<+>

AST<y>

What if you cannot evaluate it?
What else might you do?

AST<+>

AST<z>

How does this change things?

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

Evaluate an AST by doing a post order traversal

int x;
int y;
float z;
float w;
w = x + y + z

AST<x>

AST<+>

AST<y>

What if you cannot evaluate it?
What else might you do?

AST<+>

AST<z>

How does this change things?

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

adding together
two ints

adding together
an int and a float

in many languages this is fine, but we are working towards assembly language

Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction

needs to be an x86
addss instruction

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”
add r0 r1 - interprets
the bits in the registers
as integers and adds them
together

addss r0 r1 - interprets
the bits in the registers
as floats and adds them
together

Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction

needs to be an x86
addss instruction

Is this all?

int x;
int y;
float z;
float w;
w = x + y + z

Lets do some experiments.

What should 5 + 5.0 be?

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction

needs to be an x86
addss instruction

Is this all?

int x;
int y;
float z;
float w;
w = x + y + z

Lets do some experiments.

What should 5 + 5.0 be?

but

addss r1 r2

interprets both registers
as floats

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

needs to be an x86
add instruction

needs to be an x86
addss instruction

Is this all?

int x;
int y;
float z;
float w;
w = x + y + z

But the binary of 5 is 0b101
the float value of 0b101 is 7.00649232162e-45

We cannot just add them!

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

Evaluate an AST by doing a post order traversal

AST<x>

AST<+>

AST<y>

AST<+>

AST<z>

converts the int
value to a float value

We need to make sure our operands are in the right format!

int x;
int y;
float z;
float w;
w = x + y + z

AST<int_to_float>

Expr ::= NUM Expr2
Expr2 ::= PLUS NUM Expr2

| “”

Type systems

Type systems

• Given a language a type system defines:
• The primitive (base) types in the language
• How the types can be converted to other types

• implicitly or explicitly
• How the user can define new types

Type systems

• Given a language a type system defines:
• The primitive (base) types in the language
• How the types can be converted to other types

• implicitly or explicitly
• How the user can define new types

Type checking
• Check a program to ensure that it adheres to the type system

Especially interesting for compilers as a program given in the type system for the input
language must be translated to a type system for lower-level program

Type systems

• Different types of Type Systems for languages:
• statically typed: types can be determined at compile time
• dynamically typed: types are determined at runtime
• untyped: the language has no types

• What are examples of each?
• What are pros and cons of each?

Type systems

• Different types of Type Systems for languages:
• statically typed: types can be determined at compile time
• dynamically typed: types are determined at runtime
• untyped: the language has no types

• What are examples of each?
• What are pros and cons of each?

do type conversion at compile time
otherwise you have to check without
static types, this would need to be
translated to:

x + y

if type(x) == int and type(y) == int:
add(x,y)

if type(x) == int and type(y) == float:
addss(int_to_float(x), y)

if ...

Type systems

• Different types of Type Systems for languages:
• statically typed: types can be determined at compile time
• dynamically typed: types are determined at runtime
• untyped: the language has no types

• What are examples of each?
• What are pros and cons of each?

def add(x,y):
return x + y

Can write more generic code

You would need to write many
different functions for each type

Type systems

• Different types of Type Systems for languages:
• statically typed: types can be determined at compile time
• dynamically typed: types are determined at runtime
• untyped: the language has no types

• What are examples of each?
• What are pros and cons of each? Very close to assembly. You can write

really optimized code. But very painful

Type systems

• Different types of Type Systems for languages:
• statically typed: types can be determined at compile time
• dynamically typed: types are determined at runtime
• untyped: the language has no types

• What are examples of each?
• What are pros and cons of each?
• In this class, we will be:
• Compiling a statically typed language (similar to C)
• into an untyped language (similar to an ISA)
• using a dynamically typed language (python)

Type systems

Considerations:

Type systems

Considerations:
• Base types in the language:

• ints
• chars
• strings
• floats
• bool

• How to combine types in expressions:
• int and float?
• int and char?
• int and bool?

Type systems

Considerations:
• Base types:

• ints
• chars
• strings
• floats
• bool

• How to combine types in expressions:
• int and float?
• int and char?
• int and bool?

size of ints?
How does C do it?
How does Python do it?
Pros and cons?

Type systems

Considerations:
• Base types:

• ints
• chars
• strings
• floats
• bool

• How to combine types in expressions:
• int and float?
• int and char?
• int and bool?

Are strings a base type? In C? In Python?

Type systems

Considerations:
• Base types:

• ints
• chars
• strings
• floats
• bool

• How to combine types in expressions:
• int and float?
• int and char?
• int and bool?

How are bools handled? in C? in Python

Type systems

Considerations:
• Base types:

• ints
• chars
• strings
• floats
• bool

• How to combine types in expressions:
• int and float?
• int and char?
• int and bool?

Type systems

Considerations:
• Base types:

• ints
• chars
• strings
• floats
• bool

• How to combine types in expressions:
• int and float?
• int and char?
• int and bool?

What do each of these do if they are +’ed together?

Type checking

Two components
• Type inference
• Determines a type for each AST node
• Modifies the AST into a type-safe form

• Catches type-related errors

Type checking on an AST

AST<x>

AST<->

AST<y>

AST<->

AST<z>

int x;
int y;
float z;
float w;
w = x + y + z each node additionally gets a type

Type checking on an AST

AST<x, int>

AST<+>

AST<y, int>

AST<+>

AST<z, float>

each node additionally gets a type
we can get this from the symbol table for the leaves or based
on the input (e.g. 5 vs 5.0)

int x;
int y;
float z;
float w;
w = x + y + z

Type checking on an AST

AST<x, int>

AST<+,?>

AST<y, int>

AST<+>

AST<z, float>

How do we get the type for this one?
int x;
int y;
float z;
float w;
w = x + y + z

Type checking on an AST

AST<x, int>

AST<+,?>

AST<y, int>

AST<+>

AST<z, float>

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

int x;
int y;
float z;
float w;
w = x + y + z

inference rules for addition:

Type checking on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+>

AST<z, float>

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

int x;
int y;
float z;
float w;
w = x + y + z

inference rules for addition:

Type checking on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,?>

AST<z, float>

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

int x;
int y;
float z;
float w;
w = x + y + z

inference rules for addition:

Type checking on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<z, float>

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

int x;
int y;
float z;
float w;
w = x + y + z

inference rules for addition:

Type checking on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<z, float>

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

what else?

int x;
int y;
float z;
float w;
w = x + y + z

inference rules for addition:

Type checking on an AST

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<z, float>

int x;
int y;
float z;
float w;
w = x + y + z

How do we get the type for this one?

first second result
int int int

int float float

float int float

float float float

inference rules for addition:

what else? need to convert the int to a float

AST<int_to_float,?>

class ASTNode():
def __init__(self):

pass

class ASTLeafNode(ASTNode):
def __init__(self, value):

self.value = value

class ASTNumNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)

class ASTIDNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)

class ASTBinOpNode(ASTNode):
def __init__(self, l_child, r_child):

self.l_child = l_child
self.r_child = r_child

class ASTPlusNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

class ASTMultNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

class ASTNode():
def __init__(self):

self.node_type = None
pass

def set_type(self, t):
self.node_type = t

def get_type(self):
return self.node_type

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Enum for types

Our base AST Node needs a type

Now we need to set the types for the leaf nodes

class ASTNode():
def __init__(self):

self.node_type = None
pass

def set_type(self, t):
self.node_type = t

def get_type(self):
return self.node_type

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Enum for types

Our base AST Node needs a type

class ASTNumNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)
if is_int(value):

self.set_type(Types.INT)
else:

self.set_type(Types.FLOAT)

Now we need to set the types for the leaf nodes

class ASTNode():
def __init__(self):

self.node_type = None
pass

def set_type(self, t):
self.node_type = t

def get_type(self):
return self.node_type

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Enum for types

Our base AST Node needs a type

class ASTNumNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)
if is_int(value):

self.set_type(Types.INT)
else:

self.set_type(Types.FLOAT)

Now we need to set the types for the leaf nodes

class ASTIDNode(ASTLeafNode):
def __init__(self, value, value_type):

super().__init__(value)
self.set_type(value_type)

Where can we get the value type for an ID?

Symbol Table

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{

eat(TYPE)
id_name = self.to_match[1]
eat(ID)
ST.insert(id_name, None)
eat(SEMI)

}

Say we are matched the statement:
int x;

(ID, ‘x’)(TYPE, ‘int’)

in homework 2 we didn’t
record any information in the symbol
table

Symbol Table

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{

value_type = self.to_match[1]
eat(TYPE)
id_name = self.to_match[1]
eat(ID)
ST.insert(id_name, value_type)
eat(SEMI)

}

Say we are matched the statement:
int x;

(ID, ‘x’)(TYPE, ‘int’)

in homework 2 we didn’t
record any information in the symbol
table

record the type in the symbol table

class ASTNode():
def __init__(self):

self.node_type = None
pass

def set_type(self, t):
self.node_type = t

def get_type(self):
return self.node_type

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Enum for types

Our base AST Node needs a type

class ASTNumNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)
if is_int(value):

self.set_type(Types.INT)
else:

self.set_type(Types.FLOAT)

Now we need to set the types for the leaf nodes

class ASTIDNode(ASTLeafNode):
def __init__(self, value, value_type):

super().__init__(value)
self.set_type(value_type)

Where can we get the value type for an ID?

But that doesn’t get us here yet...

add the type at parse time

Unit ::= ID
| NUM

def parse_unit(self, lhs_node):
... for applying the first production rule (ID)
value = self.next_word[1]
... Check that value is in the symbol table
node = ASTIDNode(value, ST[value])
return node

Type inference

• We now have the types for the leaf nodes

AST<x, int>

AST<+,?>

AST<y, int>

AST<+,?>

AST<5.5, float>

int x;
int y;
float w;
w = x + y + 5.5

Type inference

• We now have the types for the leaf nodes

AST<x, int>

AST<+,?>

AST<y, int>

AST<+,?>

AST<5.5, float>

Next steps:

we do a post order traversal
on the AST and do a type inference

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

base case

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
...

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
return lookup type from table

left right result
int int int

int float float

float int float

float float float

inference rules for plus

lookup the rule for plus

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
return lookup type from table

left right result
int int int

int float float

float int float

float float float

inference rules for plus

lookup the rule for plus

but we’re missing a few things

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
do type inference on children
return lookup type from table

left right result
int int int

int float float

float int float

float float float

inference rules for plus

we need to make sure the
children have types!

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
do type inference on children
t = lookup type from table
set n type to t
return t

left right result
int int int

int float float

float int float

float float float

inference rules for plus

we should record our type

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
do type inference on children
t = lookup type from table
set n type to t
return t

is this just for plus?

left right result
int int int

int float float

float int float

float float float

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
do type inference on children
t = lookup type from table
set n type to t
return t

is this just for plus?

left right result
int int int

int float float

float int float

float float float

most language promote
types, e.g. ints to float for
expression operators

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a bin op node:
do type inference on children
t = lookup type from table
set n type to t
return t

is this just for plus?

left right result
int int int

int float float

float int float

float float float

most language promote
types, e.g. ints to float for
expression operators

Type inference

def type_inference(n):

case split on n:

if n is a leaf node:
return n.get_type()

if n is a bin op node:
do type inference on children
t = lookup type from table
set n type to t
return t

left right result
int int int

int float float

float int float

float float float

What about for assignments?

int x;
cout << (x = 5.5) << endl;

What does this return?

Type inference

def type_inference(n):

case split on n:

if n is a leaf node:
return n.get_type()

if n is a bin op node:
do type inference on children
t = lookup type from table
set n type to t
return t

left right result
int int int

int float int

float int float

float float float

What about for assignments?

int x;
cout << (x = 5.5) << endl;

What does this return?

whatever the left is

Type inference

def type_inference(n):

case split on n:

if n is a leaf node:
return n.get_type()

if n is an assignment:
....

if n is a bin op node:
...

left right result
int int int

int float int

float int float

float float float

What about for assignments?

int x;
cout << (x = 5.5) << endl;

What does this return?

whatever the left is

Type checking

• Checking for errors

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
do type inference on children
t = lookup type from table
if t is None:

throw type exception
set n type to t
return t

left right result
int int int

int float float

float int float

float float float

inference rules for plus

we should record our type

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
do type inference on children
t = lookup type from table
if t is None:

throw type exception
set n type to t
return t

left right result
int int int

int float float

float int float

float float float

string int None

inference rules for plus

we should record our type

like in Python

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get_type()

if n is a plus node:
do type inference on children
t = lookup type from table
if t is None:

throw type exception
set n type to t
return t

left right result
int int int

int float float

float int float

float float float

string int None

inference rules for plus

we should record our type

like in Python

See everyone on Wednesday

• We will discuss linearizing code

