CSE110A: Compilers

May 27, 2022

Topics:
* Homework overview
* More loop transforms

e Control flow graphs

Announcements

 New grades:
* Midterm grades are out
* Let us know within a week if there are issues.
You should be able to see comments for each subsection if you missed points
* If not let us know
Double check the comments. If we messed up let us know

Average was ~76%

e HW 3 is due

* |t was due yesterday
e getitin ASAP if you have not

e Homework 4 is released
* my opinion:
e conceptually it is not as hard as HW2 or HW3.
* Practically it is difficult to deal with all the corner cases.

» start early!

Quiz

What is a good optimization that should immediately follow local value numbering?

(O Constant propagation
(O Copy propagation
(O Loop unrolling

(O Common sub expressions elimination

b0 = b;
. . cl = c;
Discussion e3 = e;
f4 = f;
There lots of copies here a2 = b0 + cl;
d5 = e3 + £4;
a2z = b0 + cl; g6 = az2;
d5 = e3 + £f4; a = az2;
g6 = a2; d = d5;
Whole example: g = 96;
label O: label O0:
h2 = g0 + al; g0 = g;
k3 = h2; al = a
h2 = g0 + al;
new variables: k3 = h2;
{b0, c1, e3, f4, a2, d5, gb} h = h2;
{g0, al, h2, k3} k = k3;

Qu

1Z

Here are two ways of unrolling a for loop; what are some of the advantages or disadvantages of each
method?

for(...{

afi] = b[i] + cfi];
i ++;

a[i] = bfi] + c[i];
i+

afi] = b[i] + cfi];
i ++;

a[i] = bfi] + c[i];

i ++;

for(...J{

a[i] = bfi] + c[i];

ali+1] =b[i+ 1] + c[1 + 1];
ali+2]=bli+2]+c[1+2];
ali+3]=bli+3]+c[1+3];
i+= 4

}

Quiz

how many times i gets
updated?

memory access optimizations

loop jamming (we will see
next slide)

Here are two ways of unrolling a for loop; what are some of the advantages or disadvantages of each
method?

for(...)

a[i] = b[i] + c[il;
i+

a[i] = b[i] + c[i];
i+

a[i] = bfi] + c[il;
i+

afi] = b[i] + cfi];

for(...){

afi] = b[i] + cfi];

ali+1] =b[i+ 1] +c[1 + 1];
ali+2] =b[i + 2] + c[1 + 2];
ali+3]=bli+3]+c[1+3];
i+= 4

}

Quiz

You can only unroll the outer for loop in the following program

for(i = 0; i < 4; i++)f
for(j = 0;j < 4; j++){

SOME_INSTRUCTION;

Discussion

Lets think about how unrolling
this loop would look...

for (1 = 0; 1 < 4; i++){
for (J = 0; J < 4; Jj++){
SOME_INSTRUCTION;
}
}

Discussion

Lets think about how unrolling
this loop would look...

for (1 = 0; 1 < 4; i++){
for (J = 0; J < 4; Jj++){
SOME_INSTRUCTION;
}
}

Discussion

Lets think about how unrolling
this loop would look...

for (1 = 0; 1 < 4; i++){

for (3 0; J < 4; j++){
a[i] += b[]J];

}

i++;

for (j = 0; J < 4; Jj++){
afi] += b[]];
}
}

Discussion

for (1 = 0; 1
for (J = 0
a[i] +
a[i+l] +=

}

|| ~e

}

Lets think about how unrolling
this loop would look...

< 4; i+=2){

J < 4;
b[J]1;
b[J]1;

J++) {

This is an optimization called unroll and jam:
unroll the outer loop and fuse the inner loop.

Review

* Quiz was a good review and we’ve spent enough time on local value
numbering (on the slides at least)

Homework overview

* discussion and demo
* code structure (command line args)

* loop unrolling:
* test 4 is the right place to start

* local value numbering
* basic blocks
* parsing classier
e speedup demos

More loop transforms

* Loop nesting order
* Loop tiling

* General area is called polyhedral compilation

https://en.wikipedia.org/wiki/Polytope_model

New constraints:

* Typically requires that loop iterations are independent
* You can do the loop iterations in any order and get the same result

are these independent?

(int 1 =0; 1 < 2; i++) {
counter += 1;
¥
VS
(int 1 = 0; i < 1024; i++) {

counter = 1i;

}

adds two arrays

for (int i = 0;
a[i] = b[1] +

i < SIZE:
cl[i];

adds elements with neighbors

for (int i = 0;
a[i] += a[i+1]

i < SIZE;

i++)

i++)

{

{

are they the same if you traverse them backwards?

adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (int i = SIZE-1; i >= 0; 1i--) {
a[i] = b[1] + c[1]; a[i] = b[1] + c[1];

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {

for (int i = 0; 1 < SIZE; i++) { a[i] += a[i+1]

a[i] += a[i+1]

are they the same if you traverse them backwards?

adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (int i = SIZE-1; i >= 0; 1i--) {
a[i] = b[1] + c[1]; a[i] = b[1] + c[1];

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {

for (int i = 0; 1 < SIZE; i++) { a[i] += a[i+1]

a[i] += a[i+1]

Nol!

what about a random order?
adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (pick i1 randomly) {
a[i] = b[i] + c[1]; a[i] = b[1i] + c[1];

} }

adds elements with neighbors

for (pick 1 randomly) ({

for (int 1 = 0; 1 < SIZE; i++) { a[i] += a[i+1]
a[i] += a[i+1] }
}

what about a random order?
adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (pick i1 randomly) {
a[i] = b[i] + c[1]; a[i] = b[1i] + c[1];

} }

adds elements with neighbors

for (pick 1 randomly) ({

for (int i = 0; 1 < SIZE; i++) { a[i] += a[i+1]

a[i] += a[i+1]

) }

Nol

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[1];

}

These are DOALL loops:

* Loop iterations are independent

* You can do them in ANY order and get the same results

* If a compiler can find a DOALL loop then there are lots of optimizations

to apply!

Safety Criteria: independent iterations

e How do we check this?

* If the property doesn’t hold then there exists 2 iterations, such that if they are
re-ordered, it causes different outcomes for the loop.

 Write-Write conflicts: two distinct iterations write different values to the
same location

e Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria: independent iterations

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

Safety Criteria: independent iterations

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable

Safety Criteria: independent iterations

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable
Computation to store in the memory location

Safety Criteria: independent iterations

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
i, = 1,

Check:

index(1i,) != index(iy)

Safety Criteria: independent iterations

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (i = 0; 1 < size; 1i++) {
a[index(i)] = loop(i);
}
?
Write-write conflicts: Why: .
Because if
for two distinct iteration variables: index(1ly) == 1index(1y)
io1= i then:
X * y . . .
Check: al[index(i,)] will equal
index(i,) != index(i,) either loop(i,) orloop(iy)

depending on the order

Safety Criteria: independent iterations

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

}

Read-write conflicts:

for two distinct iteration variables:

i, != i,

Check:

write_ index(i,) != read_index(iy)

Safety Criteria: independent iterations

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

Why?
Read-write conflicts:

if i, iteration happens first, then

for two distinct iteration variables: iteration i, reads an updated value.
i, != i,
Check: if 1, happens first, then it reads the

write_index(i,) != read_index(i,) original value

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; a[i]= a[0]*2;

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; a[i]= a[0]*2;

} }

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

Examples:

for (1 = 0; 1 < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; afi]= a[0]1*2;

} }

for (i = 0; i < 128; i++) { for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2; a[i%64]= a[i+64]1*2;

} }

Motivation:

pretty straight
forward computation

Image processing for brightening

(1 pass over all pixels)

Taken from Halide:
A project out of MIT

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
output|[y,x] = X + Vy;

you can compute the pixels in any order you want, you just have to compute all of them!

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
output|[y,x] = X + Vy;

you can compute the pixels in any order you want, you just have to compute all of them!

for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
output|[y,xX] = X + y;
}

What is the difference
here? What will the difference be?

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Demo

* Why do we see the performance difference?

Adding 2D arrays together

Demo

* Memory accesses

A=B+C

But sometimes there isn’t a good ordering

transposed arrays

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

transposed arrays

* In some cases, there might not be a good nesting order for all

daCcesses:
A=B+cC"

A B C

cold miss for all of them

transposed arrays

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Hit on A and B. Miss on C

transposed arrays

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Hit on A and B. Miss on C

What happens here?

* Demo

How can we fix it?

* Can we use the compiler?

* Does loop order matter?

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
output|[y,x] = X + y;

Loop splitting:

for (int y = 0; y < 4; y++) {
for (int x outer = 0; x outer < 4; x outer+=2) {
for (int x = x outer; x < X outer+2; x++) {
output|[y,xXx] = X + y;

What is the difference here?

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Does loop splitting by itself work?

* Lets try it
 demo

We can chain optimizations

* Lets try chaining loop splitting and reorder
* Demo

We can chain optimizations

* Lets try chaining loop splitting and reorder
* Demo

* What happened?!

Our new schedule looks like this:

Why is this beneficial?

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

blocking

blocking

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

blocking

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

blocking

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+C"
A B C

cold miss for all of them

blocking

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Miss on C

blocking

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Miss on A,B, hit on C

blocking

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Hit on all!

Loop transformation summary

* If the compiler can prove different properties about your loops, you can
automatically make code go a lot faster

* [t is hard in languages like C/C++. But in constrained languages (often called
domain specific languages (DSLs) it is easier!
* Hot topic right now for Machine learning, graphics, graph analytics, etc!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Global Optimization (analysis)

* Loop transforms are a regional analysis
* Compiler works hard to show that code fits a certain pattern

* Global analysis must account for arbitrary patterns

e Generality costs us! Lots of times these optimizations are not as
effective or precise.

* But they can still help...

To finish up the class: Live variable analysis

* Not an analysis to make your code go faster
* An analysis to help warn programmers about potential bugs

* Optimizations that make code go faster are really fun but the reality i
that programmers often spend ~70% of their time debugging and
testing.

* Compilers can help!!

Control flow graphs

Control flow graphs

start:
ro = ...;
rl = ...;
A graph where: br r0, if, else;
* nodes are basic blocks if:
r2 = ...;
br end if;
* edges mean that it is
possible for one block to else:
branch to another r3 = ...
end if:

ré « oo}

Control flow graphs

start:
ro = ...;
rl = ...;
A graph where: br r0, if, else;
* nodes are basic blocks if:
r2 = ...;
br end if;
* edges mean that it is
possible for one block to else:
branch to another r3 = ...;
br end if;
end if:
réi = ...;

Control flow graphs

A graph where:
 nodes are basic blocks

* edges mean that it is
possible for one block to
branch to another

r0
ril

start:

[]
o o g

[]
o o g

br r0, if, else;

b0

if:
r2 = ...;
br end if;

" /

N

S~

else:
r3 = ...;
br end if;

end if:

rd = ...;

b3

4

Interesting CFGs

Interesting CFGs

* Exceptions
* Break in a loop
* Switch statement (consider break, no break)

e first class branches (or functions)

CFG demo

* PyCFG

See everyone on Wednesday

e Control flow graphs

