
CSE110A: Compilers
May 25, 2022

Topics: 
• Loop transformations
• Homework overview
• More loop transforms



Announcements

• New grades:
• Midterm grades are out
• Let us know within a week if there are issues.
• You should be able to see comments for each subsection if you missed points

• If not let us know
• Double check the comments. If we messed up let us know
• Average was ~76%

• HW 3 is due
• It was due yesterday
• get it in ASAP if you have not

• Homework 4 is released
• my opinion: 

• conceptually it is not as hard as HW2 or HW3. 
• Practically it is difficult to deal with all the corner cases.

• start early!



Quiz



Quiz



Discussion

a = c + b;
d = b + c;

H = {
}



Quiz



Discussion

label0:
a = b + c
d = b + c
___HERE__
label1:
e = a + f

work through the example



Quiz



Quiz



Discussion

for (int i = 0; i < 16; ++i) {
c[i] = a[i] + b[i];

}

work through the example
how many comparisons and branches can you save?
What if i was a memory location?



Review

• Stitching optimized blocks back into the whole program



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

gets optimized to this:



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

gets optimized to this:

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;

Can it be stitched together like this?



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

b0 = b;
c1 = c;
e3 = e;
f4 = f;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

a = a2;
d = d5;
g = g6;

label_0:
h2 = g0 + a1;
k3 = h2;

gets optimized to this:

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

easiest way
showing only first basic block :



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

b0 = b;
c1 = c;
e3 = e;
f4 = f;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

a = a2;
d = d5;
g = g6;

label_0:
h2 = g0 + a1;
k3 = h2;

gets optimized to this:

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

easiest way
showing only first basic block :

For a language like ClassIeR:
record new vrs:
{b0, c1, e3, f4, a2, d5, g6}



How to stitch optimized code back into the 
program

b0 = b;
c1 = c;
e3 = e;
f4 = f;
a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
a = a2;
d = d5;
g = g6;

label_0:
g0 = g;
a1 = a;
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

label_0:
h2 = g0 + a1;
k3 = h2;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

Whole example:

new variables:
{b0, c1, e3, f4, a2, d5, g6}
{g0, a1, h2, k3}



How to stitch optimized code back into the 
program

b0 = b;
c1 = c;
e3 = e;
f4 = f;
a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
a = a2;
d = d5;
g = g6;

label_0:
g0 = g;
a1 = a;
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

label_0:
h2 = g0 + a1;
k3 = h2;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

Whole example:

new variables:
{b0, c1, e3, f4, a2, d5, g6}
{g0, a1, h2, k3}

Special cases: labels and branches:
how to stitch with them?



Picking back up where we left off: 
Loop Unrolling



For loops terminology

• Loop body:
• A series of statements that are executed each loop iteration

• Loop condition: 
• the condition that decides whether the loop body is executed

• Iteration variable:
• A variable that is updated exactly once during the loop
• The loop condition depends on the iteration variable
• The loop condition is only updated through the iteration variable



Examples
for (int i = 0; i < 1024; i++) {

counter += 1;
}

iteration variable
loop body
loop condition

for (; i < 1024; i+=counter) {
counter += 1;

}

while (1) {
i++;
counter += 1;
if (i < 1024) {

break;
}

}

In general, is it possible to determine if an iteration
variable exists or not?



Loop unrolling



Loop unrolling

• Executing multiple instances of the loop body without checking the 
loop condition.

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

for (int i = 0; i < 128; i++) {
// body
i++
// body

}

unrolled by a factor of 2

could we unroll more?



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a variable (cond) or literal
* check that cond is not assigned in body

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a variable or literal (cond)
* check that cond is not assigned in body

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Do these guarantee we will find an iteration variable?
What happens if we don’t find one? how does C-simple help us here?



Loop unrolling conditions

• Several ways to unroll
• More constraints: Simpler to unroll in code generation
• Less constraints: Harder to unroll in code generation

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a variable or literal (cond)
* check that cond is not assigned in body

Base constraints (required for any unrolling):



Loop unrolling conditions

• Simple unroll
• Most constraints
• Easiest code generation Simple unroll constraints:

• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times
• perform codegen

For unroll factor F



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

how to do these
steps?



Loop unrolling conditions

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

for (int i = 0; i < 128; i++) {
// body
i++
// body

}

result for a factor of 2

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times
• perform codegen



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times 
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 8; i+=3) {
// body

}

what can go wrong?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times 
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 8; i+=3) {
// body

}

what can go wrong?

Actually this is fine as long as i is updated with
a constant addition. but we need a more
complicated formula to calculate LI:

ceil((end - start)/update)

But you may want to keep your life simpler
by constraining it. We will keep it for now



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times 
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 8; i+=3) {
// body

}

what can go wrong?

Do example



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times 
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 4; i++) {
// body

}

what can go wrong?

What if we try to
unroll this by a 
factor of 3?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body ... F times 
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 4; i++) {
// body

}

what can go wrong?

What if we try to
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute
body?



Loop unrolling conditions

for (int i = 0; i < 4; i++) {
// body

}
What if we try to
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute
body?

Let’s examine this a bit closer?



Loop unrolling conditions

for (int i = 0; i < 4; i++) {
// body

}
What if we try to
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute
body?

Let’s examine this a bit closer?

for (int i = ?; i < ?; i++) {
// body
i++
// body
i++
// body

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop



Loop unrolling conditions

for (int i = ?; i < ?; i++) {
// body
i++
// body
i++
// body

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop

initially the loop starts the same as the original loop

for (int i = 0; i < 4; i++) {
// body

}

find out how many unrolled loops we can execute:
?
This gives us the first bound

second loop is initialized with the first bound

second loop’s bound is same as the original loop 



Loop unrolling conditions

for (int i = ?; i < ?; i++) {
// body
i++
// body
i++
// body

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop

initially the loop starts the same as the original loop

for (int i = 0; i < 4; i++) {
// body

}

find out how many unrolled loops we can execute:
(4 / 3) * 3 = 3
This gives us the first bound

second loop is initialized with the first bound

second loop’s bound is same as the original loop 



Loop unrolling conditions

for (int i = ?; i < ?; i++) {
// body
i++
...

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop

What about in the general case? For unroll factor F?

for (int i = x; i < y; i++) {
// body

}

find out how many unrolled loops we can execute:
?
This gives us the first bound

second loop is initialized with the first bound

second loop’s bound is same as the original loop 



Loop unrolling conditions

• general unroll

General unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI

General unroll code generation:
• Create simple unrolled loop with new bound: (LI/F)*F
• Create cleanup (basic) loop with initialization: (LI/F)*F
• perform codegen

For unroll factor F

None of these numbers have to be concrete!



Homework overview

• discussion and demo on command line



More loop transforms

• Loop nesting order

• Loop tiling

• General area is called polyhedral compilation

https://en.wikipedia.org/wiki/Polytope_model



New constraints:

• Typically requires that loop iterations are independent
• You can do the loop iterations in any order and get the same result

for (int i = 0; i < 2; i++) {
counter += 1;

}

vs

for (int i = 0; i < 1024; i++) {
counter = i;

}

are these independent?



Motivation: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

Image processing



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

you can compute the pixels in any order you want, you just have to compute all of them! 



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

you can compute the pixels in any order you want, you just have to compute all of them! 

for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {

output[y,x] = x + y;
}

}
What is the difference
here? What will the difference be?



Demo

• Why do we see the performance difference?



Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶



But sometimes there isn’t a good ordering



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C



What happens here?

• Demo



How can we fix it? 

• Can we use the compiler?



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 4; x_outer+=2) {

for (int x = x_outer; x < x_outer+2; x++) {
output[y,x] = x + y;

}
}

}

Loop splitting:

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

What is the difference here?



Does loop splitting by itself work?

• Lets try it
• demo



We can chain optimizations

• Lets try chaining loop splitting and reorder
• Demo



We can chain optimizations

• Lets try chaining loop splitting and reorder
• Demo

• What happened?!



Our new schedule looks like this:

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Why is this beneficial?



blocking



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on C



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!



See everyone on Friday

• Control flow graphs


