
CSE110A: Compilers
May 23, 2022

Topics: 
• Finish local value numbering
• Loop transformations



Announcements

• New grades:
• Midterm grades will be posted by end of the day

• HW 3 is out
• Due tomorrow
• Double check piazza for hints and discussions

• Homework 4
• Will be released either tonight or tomorrow by midnight



Announcements

• Schedule:
• We’ll finish up local value numberings and talk about loop transformations
• I want to spend time on a homework overview
• I want to talk about a global optimization

• Either undefined variable analysis
• Or code slicing

• For backends, I want to talk about register allocation

• We will see what we have time for...



Quiz

• Thank you for taking the time to fill it out;
• Its very helpful, and especially for newly designed classes like this.

• Speaking of helpful things:
• SETs are out!
• Those are the official feedback forms for classes
• It is incredibly useful for new faculty and especially for new classes
• CSE113 example
• I’d really appreciate it if you could fill it out



Review

• Local value numbering
• Local optimization
• Simple algorithm that can be built on:

• initial version just used string comparison
• next we added commutativity
• lastly we extended the algorithm to not add any new registers

• Second lecture 
• we added constant propagation and folding
• we talked about copy propagation and folding
• we talked about memory and functions



LVN with constant prop/folding

b = 5;
c = 3;
e = 8;

a = b + c;
b = a - d;
g = f + c;
d = e - d;
h = c + f;

H = {
}

Known_values = {

}

Work through the example



How to do it for Classier?

void foo(int &x) {
b = int2vr(5);
c = int2vr(3);

a = addi(b,c);
d = a;
x = vr2int(a);
}

H = {
}

Known_values = {

}



Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?



Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?

If we want to perform this optimization
we need to ensure that a does not alias 
x or y. 

How can we do that?



Local value numbering: functions

a1 = foo(x0);
c2 = a1;

a1 = foo(x0);
c2 = foo(x0);

Is this optimization allowed?



Local value numbering: functions

a1 = foo(x0);
c2 = a1;

a1 = foo(x0);
c2 = foo(x0);

Is this optimization allowed?

int count = 0;
int foo(int x) {
count += 1;
return 0;

};

functions might have side effects!
how can we tell the compiler it
doesn’t?



New material

• How to stitch optimized code back into the whole program



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

split into basic blocks



How to stitch optimized code back into the 
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

number



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

move code on slide to make room



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;



How to stitch optimized code back into the 
program

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;

What are the issues?

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original code



How to stitch optimized code back into the 
program

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;

What are the issues?
undefined!

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original code



How to stitch optimized code back into the 
program

stitch 
part 1: assign original 
variables their latest values

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

make room on slide

what else needs to be done?



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

stitch part 2: drop numbers from first use of variables

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;



How to stitch optimized code back into the 
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

Now they can be combined

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;



How to stitch optimized code back into the 
program

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original

new is it really optimized?

It looks a lot longer...



How to stitch optimized code back into the 
program

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original

new is it really optimized?

Common pattern for code to get
larger, but it will contain patterns
that are easier optimize away

later passes will minimize copies



New material

• Loop transformations



Loop optimizations

• Regional optimization
• We can handle multiple basic blocks
• but only if they fit a certain pattern



For loops

• How do they look in different languages
• C/C++
• Python
• Numpy

• The more constrained the for loops are, the more assumptions the 
compiler can make, but less flexibility for the programmer



For loops

• The compiler can optimize For loops if they fit a certain pattern

• When developing a regional optimization, we start with strict 
constraints and then slowly relax them and make the optimization 
more general.
• Sometimes it is not worth relaxing the constraints (optimization gets too 

complicated. Its not the compilers job to catch every pattern!)
• If a programmer knows the pattern, then often you can write code such that

the compiler can recognize the pattern and it will do better at optimizing!
• Thus you can write more efficient code if you write it in such a way that the 

compiler can recognize patterns



For loops terminology

• Loop body:
• A series of statements that are executed each loop iteration

• Loop condition: 
• the condition that decides whether the loop body is executed

• Iteration variable:
• A variable that is updated exactly once during the loop
• The loop condition depends on the iteration variable
• The loop condition is only updated through the iteration variable



Examples
for (int i = 0; i < 1024; i++) {

counter += 1;
}

iteration variable
loop body
loop condition

for (; i < 1024; i+=counter) {
counter += 1;

}

while (1) {
i++;
counter += 1;
if (i < 1024) {

break;
}

}

In general, is it possible to determine if an iteration
variable exists or not?



Examples

for (; i < 1024; i++) {
counter += 1;
foo();

}

What about these?

for (; i < j; i++) {
counter += 1;
j = rand();

}



Loop unrolling



Loop unrolling

• Executing multiple instances of the loop body without checking the 
loop condition.

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

for (int i = 0; i < 128; i++) {
// body
i++
// body

}

unrolled by a factor of 2

could we unroll more?



Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

What can go wrong?

for (int i = 0; i < 128; i++) {
// body
i++
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a variable or literal (cond)
* check that cond is not assigned in body

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}



Loop unrolling conditions

• Under what conditions can we unroll?

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a variable or literal (cond)
* check that cond is not assigned in body

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Do these guarantee we will find an iteration variable?
What happens if we don’t find one? how does C-simple help us here?



Loop unrolling conditions

• Several ways to unroll
• More constraints: Simpler to unroll in code generation
• Less constraints: Harder to unroll in code generation

Validate that we actually have an iteration variable
1. find candidate on lhs of assignment statement
2. check no assignments to candidate in body
3. check that it matches lhs of assignment_statement
4. check loop condition

* check that candidate variable is on lhs
* check that the rhs is a variable or literal (cond)
* check that cond is not assigned in body

Base constraints (required for any unrolling):



Loop unrolling conditions

• Simple unroll
• Most constraints
• Easiest code generation Simple unroll constraints:

• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

how to do these
steps?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

for (int i = 0; i < 128; i++) {
// body
i++
// body

}

result for a factor of 2



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 8; i+=3) {
// body

}

what can go wrong?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 8; i+=3) {
// body

}

what can go wrong?

Actually this is fine as long as i is updated with
a constant addition. but we need a more
complicated formula to calculate LI:

ceil((end - start)/update)

But you may want to keep your life simpler
by constraining it. We will keep it for now



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 4; i++) {
// body

}

what can go wrong?

What if we try to
unroll this by a 
factor of 3?



Loop unrolling conditions

Simple unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI
• F must divide LI evenly

Simple unroll code generation:
• create a new body = body + update + body
• perform codegen

For unroll factor F

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 4; i++) {
// body

}

what can go wrong?

What if we try to
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute
body?



Loop unrolling conditions

for (int i = 0; i < 4; i++) {
// body

}
What if we try to
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute
body?

Let’s examine this a bit closer?



Loop unrolling conditions

for (int i = 0; i < 4; i++) {
// body

}
What if we try to
unroll this by a 
factor of 3?

for (int i = 0; i < 4; i++) {
// body
i++
// body
i++
// body

}

How many times
do we execute
body?

Let’s examine this a bit closer?

for (int i = ?; i < ?; i++) {
// body
i++
// body
i++
// body

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop



Loop unrolling conditions

for (int i = ?; i < ?; i++) {
// body
i++
// body
i++
// body

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop

initially the loop starts the same as the original loop

for (int i = 0; i < 4; i++) {
// body

}

find out how many unrolled loops we can execute:
(4 / 3) * 3 = 3
This gives us the first bound

second loop is initialized with the first bound

second loop’s bound is same as the original loop 



Loop unrolling conditions

for (int i = ?; i < ?; i++) {
// body
i++
...

}

for (int i = ?; i < ?; i++) {
// body

}

what if we executed the unrolled loop
as many times as it was valid, and did
the rest with a non-unrolled loop

What about in the general case? For unroll factor F?

for (int i = x; i < y; i++) {
// body

}

find out how many unrolled loops we can execute:
?
This gives us the first bound

second loop is initialized with the first bound

second loop’s bound is same as the original loop 



Loop unrolling conditions

• general unroll

General unroll constraints:
• Loop update increments by 1
• Find the concrete number of loop iterations, LI

General unroll code generation:
• Create simple unrolled loop with new bound: (LI/F)*F
• Create cleanup (basic) loop with initialization: (LI/F)*F
• perform codegen

For unroll factor F

None of these numbers have to be concrete!



More loop transforms

• Loop nesting order

• Loop unroll and jam

• Tiling

• General area is called polyhedral compilation

https://en.wikipedia.org/wiki/Polytope_model



See everyone on Wednesday

• More loop transformations


