
CSE110A: Compilers
May 18, 2022

Topics:
• Local value numbering 2
• Loop transformations

Announcements

• New grades:
• HW 2 posted
• Please let us know within 1 week if there are any issues!

• Pending grades
• Midterm (expect by Monday)

• HW 3 is released
• Due on Tuesday
• Get started if you haven’t
• I have office hours tomorrow
• Keep your eye on piazza for this assignment!

Announcements

• No class on Friday
• Take the time to work on Homework 3!

Quiz

Quiz

Discussion

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

}

• Local value numbering operates over 3 address code
• The parser produces 3 address code
• In some cases, the parser might use LVN, but it is independent

Quiz

Discussion

• Reminder on a basic block

Discussion

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a
high-level language?

…
if (expr) {

…
}
else {
…

}
…

Single Basic Block

Two Basic Blocks

How many basic blocks?

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

Discussion Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT
always optimized

to

Label_0:
x = a + b;

Label_1:
y = x;

br Label_1;

Label_0:
x = a + b;

Label_1:
y = a + b;

Quiz

True!

Although you might imagine algorithms that can work on more basic blocks.
This is called superlocal value numbering

Quiz

Discussion

a = b + c;
d = e * f;
b = b + c;
c = c + b ;
g = f * e;

H = {
,

}

Discussion

a = b + c;
d = e * f;
b = b + c;
c = c + b ;
g = f - e;

H = {
,

}

What if we changed this?

Quiz

Discussion

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

how might this influence other optimizations?

Discussion

for (int i = 0; i < 10; i++) {
x = y + z;

}

for (int i = 0; i < 10; i++) {
x = y + z;
i++;
x = y + z; // can be replaced

// using LVN
}

loop unrolling

how might this influence other optimizations?

Discussion

How might constant propagation change this program

a = 16;
b = a + c;
d = 16;
e = d + c;

Discussion

a = 16;
b = a + c;
d = 16;
e = d + c;

How might constant propagation change this program

a = 16;
b = 16 + c;
d = 16;
e = 16 + c;

Discussion

a = 16;
b = a + c;
d = 16;
e = d + c;

How might constant propagation change this program

a = 16;
b = 16 + c;
d = 16;
e = 16 + c; LVN can now replace the bottom one

It’s a little more difficult to apply
to ClassIeR. Do people have any ideas?

Quiz

Loop unrolling -> Constant propagation -> Local value numbering

Next quiz

• Teaching feedback from CITL
• Part of a larger program to help improves classes here

Review

• Basic blocks
• A piece of 3 address code that has one entry and one exit
• Any line of code can assume that all lines before it have been executed
• Allows “local” reasoning
• pycfg example

• Local value numbering
• Local optimization
• Simple algorithm that can be built on:

• initial version just used string comparison
• next we added commutativity
• lastly we extended the algorithm to not add any new registers

Review

• Algorithm for applying LVN:
• split 3 address code into basic blocks
• for each basic block

• number the variables
• try to remove expensive arithmetic operations

Today

• Adding constant folding to LVN
• Discussing memory and functions in LVN
• How to add optimized code blocks back into the IR

Constant propagation and constant folding

• Colloquially, they are often used interchangeably

• Technically (e.g. according to the books)
• Constant propagation is replacing variables with constants
• Constant folding is compile-time evaluation when constants are known

Constant propagation and constant folding

from: https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation

int x = 14;
int y = 7 - x / 2;
return y * (28 / x + 2);

Constant propagation and constant folding

from: https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation

int x = 14;
int y = 7 - x / 2;
return y * (28 / x + 2);

int x = 14;
int y = 7 - 14 / 2;
return y * (28 / 14 + 2);

constant propagation

Constant propagation and constant folding

from: https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation

int x = 14;
int y = 7 - x / 2;
return y * (28 / x + 2);

int x = 14;
int y = 7 - 14 / 2;
return y * (28 / 14 + 2);

constant propagation

int x = 14;
int y = 0;
return y * (28 / 14 + 2);

constant
folding

Constant propagation and constant folding

from: https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation

int x = 14;
int y = 7 - x / 2;
return y * (28 / x + 2);

int x = 14;
int y = 7 - 14 / 2;
return y * (28 / 14 + 2);

constant propagation

int x = 14;
int y = 0;
return y * (28 / 14 + 2);

constant
folding

constant
propagation

int x = 14;
int y = 0;
return 0 * (28 / 14 + 2);

Constant propagation and constant folding

from: https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation

int x = 14;
int y = 7 - x / 2;
return y * (28 / x + 2);

int x = 14;
int y = 7 - 14 / 2;
return y * (28 / 14 + 2);

constant propagation

int x = 14;
int y = 0;
return y * (28 / 14 + 2);

constant
folding

constant
propagation

int x = 14;
int y = 0;
return 0 * (28 / 14 + 2);

constant
folding

int x = 14;
int y = 0;
return 0;

Typically performed at the same time

from: https://en.wikipedia.org/wiki/Constant_folding#Constant_propagation

int x = 14;
int y = 7 - x / 2;
return y * (28 / x + 2);

int x = 14;
int y = 0;
return y * (28 / 14 + 2);

constant propagation and folding second line

int x = 14;
int y = 0;
return 0;

constant propagation and folding third line

Adding constant folding to LVN

b = 5;
c = 3;

a = b + c;
b = a - d;
c = a + c;
d = a - d;

H = {
}

Known_values = {

}

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = b0 + c1;
b4 = a2 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {
}

Known_values = {

}

numbering

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = b0 + c1;
b4 = a2 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {
}

Known_values = {

}

As you are iterating through code, add any constant mappings to Known_values:

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = b0 + c1;
b4 = a2 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {
}

Known_values = {
“b0” : 5
“c1” : 3

}

As you are iterating through code, add any constant mappings to Known_values:

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = b0 + c1;
b4 = a2 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {
}

Known_values = {
“b0” : 5
“c1” : 3

}

When you find an arithmetic operation, first check if operands are known

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = b0 + c1;
b4 = a2 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {
}

Known_values = {
“b0” : 5
“c1” : 3

}

When you find an arithmetic operation, first check if operands are known

5 + 3

evaluate and add to known values

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = 8;
b4 = a2 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {
}

Known_values = {
“b0” : 5
“c1” : 3
“a2” : 8

}

When you find an arithmetic operation, first check if operands are known

5 + 3

evaluate and add to known values

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = 8;
b4 = 8 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {

}

Known_values = {
“b0” : 5
“c1” : 3
“a2” : 8

}

When you find an arithmetic operation, first check if operands are known

propagate constant (if IR allows it)

Adding constant folding to LVN

b0 = 5;
c1 = 3;

a2 = 8;
b4 = 8 - d3;
c5 = a2 + c1;
d6 = a2 - d3;

H = {
“8 - d3” : b4
}

Known_values = {
“b0” : 5
“c1” : 3
“a2” : 8

}

When you find an arithmetic operation, first check if operands are known

add to H

continue on.

why do we want to store 8
here rather than a2?

Arithmetic identities

b0 = 0;
d3 = 1;
f7 = 4;

a2 = b0 + c1;
b4 = a2 * d3;
d6 = e5 * f7;

H = {
}

Known_values = {
}

Arithmetic identities

b0 = 0;
d3 = 1;
f7 = 4;

a2 = b0 + c1;
b4 = a2 * d3;
d6 = e5 * f7;

H = {
}

Known_values = {
”b0”:0, “d3”:1, “f7”:4
}

what can we do here?

Arithmetic identities

b0 = 0;
d3 = 1;
f7 = 4;

a2 = b0 + c1;
b4 = a2 * d3;
d6 = e5 * f7;

H = {
}

Known_values = {
”b0”:0, “d3”:1, “f7”:4
}

what can we do here?
add a special rule for +
that if any side is 0, you can
just drop the 0.

Arithmetic identities

b0 = 0;
d3 = 1;
f7 = 4;

a2 = c1;
b4 = a2 * d3;
d6 = e5 * f7;

H = {
}

Known_values = {
”b0”:0, “d3”:1, “f7”:4
}

what can we do here?
add a special rule for +
that if any side is 0, you can
just drop the 0.

What other rules could we have?

Other considerations in LVN

• Memory and functions

Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?

Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?
No!

only if the compiler can prove that a does not alias x and y

In the worst case, every time a memory location is updated,
the compiler must update the value for all pointers.

Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

Example, initially:

i = j
a = x
y[k] = 1
x[j] = 1

What does b[i] equal at the end of
each computation?

Local value numbering: Memory

• How to number:
• Number each pointer/index pair

a[i] = x[j] + y[k];
b = x[j] + y[k];

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b,6) = (x[j],?) + (y[k],?);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b,6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

Does this help at all?

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b,6) = (x[j],4) + (y[k],5);
(c,7) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

Does this help at all?

If there is no memory writes between an assignment to a variable
then we can do a replacement

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b,6) = (x[j],4) + (y[k],5);
(c,7) = (b,6);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

Does this help at all?

If there is no memory writes between an assignment to a variable
then we can do a replacement

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

A compiler analysis might try
to determine that addresses can’t
alias

can we trace a,x,y to
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],1) + (y[k],2);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

in this case we do not have to update the number

A compiler analysis might try
to determine that addresses can’t
alias

can we trace a,x,y to
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by ain this case we do not have to update the number

Warning: the compiler does not enforce
this!

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (a[i],3);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

Local value numbering: functions

Local value numbering: functions

a = foo(x);
x = b;
c = foo(x);

How to number?

Local value numbering: functions

a = foo(x);
x = b;
c = foo(x);

How to number?

a1 = foo(x0);
x3 = b2;
c4 = foo(x3);

the same way

What if you had
first class functions?

Local value numbering: functions

a = foo(x);
x = b;
c = foo(x);

How to number?

a1 = foo(x0);
x3 = b2;
c4 = foo(x3);

the same way

Can we replace?

Local value numbering: functions

a = foo(x);
c = foo(x);

How to number?

a1 = foo(x0);
c2 = foo(x0);

the same way

How about now?

Local value numbering: functions

a = foo(x);
c = foo(x);

How to number?

a1 = foo(x0);
c2 = foo(x0);

the same way

How about now?

int count = 0;
int foo(int x) {
count += 1;
return 0;

};

What if foo had
this implementation?

Local value numbering: functions

a = foo(x);
c = foo(x);

How to number?

a1 = foo(x0);
c2 = foo(x0);

the same way

How about now?

int count = 0;
int foo(int x) {
count += 1;
return 0;

};

What if foo had
this implementation?

side effects!

Local value numbering: functions

a = foo(x);
c = foo(x);
print(count);

a1 = foo(x0);
c2 = a1;
print(count);

are these two programs the same?

int count = 0;
int foo(int x) {
count += 1;
return 0;

};

Local value numbering: functions

• In C/++, functions are assumed to have side effects

• A function that does not have side effects is called “pure”
• You can annotate a function as pure
• __attribute__((pure))
• warning: compiler does not check this and you can introduce subtle bugs

• Functional languages tend to have a pure-by-default design. Allows
more compiler optimizations, but less control to the programmer.

How to stitch optimized code back into the
program

How to stitch optimized code back into the
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

How to stitch optimized code back into the
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

split into basic blocks

How to stitch optimized code back into the
program

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

number

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

move code on slide to make room

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;

What are the issues?

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

put together?

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
label_0:
h2 = g0 + a1;
k3 = h2;

What are the issues?
undefined!

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = b0 + c1;

label_0:
h2 = g0 + a1;
k3 = a1 + g0;

optimize

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;

label_0:
h2 = g0 + a1;
k3 = h2;

stitch
part 1: assign original
variables their latest values

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

make room on slide

what else needs to be done?

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

stitch part 2: drop numbers from first use of variables

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

How to stitch optimized code back into the
program

a2 = b0 + c1;
d5 = e3 + f4;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g0 + a1;
k3 = h2;
h = h2;
k = k3;

Now they can be combined

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;

label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

How to stitch optimized code back into the
program

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original

new is it really optimized?

It looks a lot longer...

How to stitch optimized code back into the
program

a2 = b + c;
d5 = e + f;
g6 = a2;
g = g6;
d = d5
a = a2;
label_0:
h2 = g + a;
k3 = h2;
h = h2;
k = k3;

a = b + c;
d = e + f;
g = b + c;

label_0:
h = g + a;
k = a + g;

original

new is it really optimized?

Common pattern for code to get
larger, but it will contain patterns
that are easier optimize away

later passes will minimize copies

Loop optimizations

For loops

• How do they look in different languages
• C/C++
• Python
• Numpy

• How do Python and Numpy look under the hood?

• The more constrained the for loops are, the more assumptions the
compiler can make, but less flexibility for the programmer

For loops

• The compiler can optimize For loops if they fit a certain pattern

• When developing a compiler optimization, we start with strict
constraints and then slowly relax them and make the optimization
more general.
• Sometimes it is not worth relaxing the constraints (code gets too complex)
• If you know the constraints, then often you can write code such that the

compiler can recognize the pattern and optimize!

For loops terminology

• Loop body:
• A series of statements that are executed each loop iteration

• Loop condition:
• the condition that decides whether the loop body is executed

• Iteration variable:
• A variable that is updated exactly once during the loop
• The loop condition depends on the iteration variable

Loop unrolling

• Executing multiple instances of the loop body without checking the
loop condition.

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

for (int i = 0; i < 128; i++) {
// body
i++
// body

}

unrolled by a factor of 2

could we unroll more?

Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Validate that we actually have an iteration variable
1. lhs of assignment statement
2. no assignment to variable in body
3. lhs of loop condition
4. lhs of assignment_statement

Do these guarantee we will find an iteration variable?
What happens if we don’t find one?

Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Validate that we actually have an iteration variable
1. lhs of assignment statement
2. no assignment to variable in body
3. lhs of loop condition
4. lhs of assignment_statement

Do these guarantee we will find an iteration variable?
What happens if we don’t find one?

How does C-simple help us here?

Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Validate properties of iteration variable
1. ?

Loop unrolling conditions

• Under what conditions can we unroll?

FOR LPAR assignment_statement expr SEMI assignment_statement RPAR statement

for (int i = 0; i < 128; i++) {
// body

}

Validate properties of iteration variable
1. identify an iteration range (start and end)
2. increment by 1

See everyone on Monday

• No class on Friday
• See you on Monday
• Topics: Continue Loop unrolling

