CSE110A: Compilers

May 16, 2022

Topics:
* Basic blocks
* Local value numbering

Announcements

* New grades:
e HW 2 posted
* Please let us know within 1 week if there are any issues!

* Pending grades
* Midterm (expect by next Friday)

e HW 3 is released

* Due in two weeks from release date
* Get started early; you have all the material you need!

* Packet updated (hopefully for the last time). Just updated the path to classir.h in
ir_compiler.py.

» Keep your eye on piazza for this assignment!

Announcements

* HW 4 should be released by May 23

* This will give you 2 weeks to get it in before the final date (June 7)

* You cannot turn this homework in after June 7
* This is not my policy, it is the department policy!

Quiz

|dentify the largest common subexpression of the following program:

intx=1+2;
inty=1+x*x*x;
intz=x+y*1+2+3;
if(z==2+y*1){

intw=1+2+3;

O1+2+3
O x*x*x
Oy 1+2

O2+3

Discussion

int x =1 + 2;
int y =1+ x * x * x;
O1+2+3 int z=x+y * 1+ 2 + 3;
O Xx*x*x if (z == 2+ y * 1) {
int w=1+ 2 + 3;
Oy*1+2 }

O 2+3

Quiz

Perform Constant propagation on the following program; what would the function return? (assume
“if-statement” is a 'constexpr if-statement')

int a = 30;
int b =9 - (a/ 5);
int c;
c=b * 4
if (c > 10) {
c=c - 10;
3

return ¢ * (60 / a);

Discussion

int a = 30;

int b =9 - (a / 5);

int c;

c =Db * 4;

if (¢ > 10) { ¢ = c - 10; }
return c * (60 / a);

Quiz

loop unrolling is a

O local

(O regional

(O global

optimization

Optimization categories

* local optimizations: examine a “basic block”, i.e. a small region of
code with no control flow.

* Regional optimizations: several basic blocks with simple control flow.
* Global optimization: optimizes across an entire function

Implicit parse tree

if else statement := IF LPAR expr RPAR statement ELSE statement

if (program0) {

programl
}
else { .pe
program2 We have several structures to utilize
} to analyze and optimize programs!

What IRs do we have at this point?

3 address code AST

virtual re ;
virtual:reg ; AST<+,float>

virtual_reg ;
vr@ = int2vr(5);

_hew_name@® = vro; .
vrl = int2vr(6); AST<+,int> AST<5.5, float>

T T

AST<X, int> AST<y, int>

IR programs

IR Analysis/
loop!

Optimization ©0op
optimized IR
program

target code

gen
target code loop!

optimizations

machine
code

Optimization categories

* local optimizations: examine a “basic block”, i.e. a small region of
code with no control flow.

* Regional optimizations: several basic blocks with simple control flow

* Global optimization: optimizes across an entire function

Discussion:

* What are the pros and cons of each?
* Why don’t we go further than functions?

Basic blocks

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:
* There is a single entry, single exit

Single Basic Block

. . Label x:
* Important property: an instruction opl;
in a basic block can assume that all op2;
preceding instructions will execute gi3iabel .

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label_ x:
el opl;
. . Label x: .
o lmportant property: an instruction opl: ggir

in a basic block can assume that all op2;

preceding instructions will execute oP3;

Label y:
br label z;

op4;
op5;

How might they appearin a

| R P rog ra m St |" u Ct u re Z)i(gaf;lsl\;esl?language? What are some
* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label x:
bel opl;
. . Label Xx: .
* Important property: an instruction opl; ggi:
in @ basic block can assume that all op2; '
I I i i op3; Label vy:
preceding instructions will execute br 1abel z: Lake ¥

op5;

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:

* A sequence of 3 address instructions such that:

* There is a single entry, single exit

* Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

How might they appearin a
high-level language?

How many basic blocks?

If (x)

}

else {

}

{

Single Basic Block

Label x:
opl;

op2;

op3;

br label z;

Two Basic Blocks

Label x:
opl;
op2;
op3;

Label y:
op4;
op5;

Converting 3 address code into basic blocks

* Let’s try an example: test 4 in HW 3:

Converting 3 address code into basic blocks

e Simple algorithm:
* keep a list of basic blocks
a basic block is a list of instructions

Iterate over the 3 address instructions

if you see a branch or a label, finalize the current basic block and start a new
one.

otherwise just add the current instruction to the current basic block

Converting 3 address code into basic blocks

pseudo code

= []
= []
instr program:
instr type [branch, labell]:
bb.append(instr)
basic_blocks.append[bb]
= []

bb.append(instr)

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
¢ operates across an entire procedure

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
¢ operates across an entire procedure

Label O0:

n
o o

O O

e

e

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
¢ operates across an entire procedure

Label O0:

n
o o

O O

e

e

optimized

to
—

Label O0:
X = a + b;
y = X;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure

Label O0:

O O

n
o o

Label O0:
X = a + b;

Label 1:
y = a + b;

optimized
to
—_

CANNOT
always optimized
to
—_

Label 0:
X = a + b;

Label 1:
y = Xj;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure

Label O0:
X = a + b;

Label 1:
y = a + b;

code could skip Label O,
leaving x undefined!

optimized

to
—

CANNOT
always optimized
to
—_

Label O0:
X = a + b;
y = X;

Label 0:
X = a + b;

Label 1:
y = Xj;

br Label 1;

Label O0:

X = a + b;

Label 1:

y = a + b;

Regional Optimization

if (x) |
} we cannot replace:
else { y=a+b.

X = a + b; with

y=X

Regional Optimization

This requires regional analysis

if (%) {

}

else {
X = a + b;

}
y = a + b;

X = a + b;
if (x) |

else {

we cannot replace:
y=a+b.
with
y=X

But in this case, we can check if a
and b are not redefined, then
y=a+b;
can be replaced with
y=X

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

O o9 O
I+ 1 +
Q. Q Q0

Q. Q O 9w

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;
b =a - d; valid? b =a - d;
c=b+c;| —* |c = a;

d = a - d; d =a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

C; a b + c;

d; valid? b=a-4d; No! Because b is redefined

0 Q 0o w
o nn
O oo O

I+ 1 +
Q
Q
i
o))

a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;
b =a - d; valid? b=a-d:;
c=b+c;| " |c=Db+ c;
d =a - d; d = b;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;

b =a - d; valid? b=a-d:;
c=b+c;| — > |c=Db+ c; yes!
d =a - d; d = b;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a=>b + c; Global_counter =0
b =a - d;
c = b + c;
d = a - d;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a2 = b0 + cl; Global_counter =7
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; o
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

—|az = b0 + cl; t “b0 + cl” : “a2”
b4 = a2 - d3; } '
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; t “DO + cl” : “a2”
— |b4 = a2 - d3; } '

cS = bd + cl;

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H =
a2z = b0 + clj “b0 + cl” “a2",
— |b4d = a2 - d3; “a2 - d3” : "b4",
c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H = {
a2z = b0 + clj “b0 + cl” “a2",
bd = a2 - d3; “a2 - d3” : "ba",
—— |c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; i WpO 4 ol : “g2n mismatch due to

b4 = a2 - d3; va2 - d3" : "bdr, numberings!
—— |c5 = bd + cl; }

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,
bd = a2 - d3; “a2 - d3” : "b4",

_ »|c5 = b4 + Cl; “b4d + cl” : “c5”,
d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

cS5 = bd + Cl; “b4d + cl” : “c5”,
_ . |d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

c5 = bd + cl; “b4 + cl” : "e57, match!
_ . |d6 = b4; }

What else can we do?

What else can we do?

Consider this snippet:

az2
f4
ch
dé6

cl
d3
b0
a2

- b0;

az2;

- cl;

d3;

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?
X OP y ==y OP x

What operators are commutative? Which ones are not?

Adding commutativity to local value
numbering

* For commutative operators (e.g. + *), the analysis should consider a
deterministic order of operands.

* You can use variable numbers or lexigraphical order

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

— a2 = cl - b0; ?z '
fd = d3 * a2;
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

cannot re-order because - is not commutative

f4 = d3 * a2; }
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl = bO” : “a2”
—— | f4 = d3 * a2; } '

c5 = b0 - cl;

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

re-ordered because a2 < d3 lexigraphically

az = cl - b0; t “cl - b0” : “a2”
— | £f4 = d3 * a2; "a2 * d3” “f4":

c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; “cl - b0” : “a2",

f4 = d3 * a2; "a2 * d3" : “f4r,
——|c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,
f4 = d3 * a2; "a2 * d3” : “f4",

—|c5 = b0 - cl; "b0 - cl “c5",
d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,

f4 = d3 * a2; "a2 * d3” : “f4",

c5 = b0 - cl; "b0 - cl” : “c5”,
—|d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

_ H = {
a2 - C]. bO, ucl - bO" . ua2",
f4 = d3 * a2; "a2 * d3” : “f4",
CS — bO — Cl; "bO - Cl" : ”C5",
—|d6 = f4; '

Other considerations?

Local value numbering w/out adding registers

e We've assumed we have access to an unlimited number of virtual
registers.

* In some cases we may not be able to add virtual registers
* |f an expensive register allocation pass has already occurred.

e New constraint:

* We need to produce a program such that variables without the numbers is
still valid.

Local value numbering w/out adding registers

* Example:
a = x + vy,
a = z;

b =x+vy;

numbering

local value
numbering with
unlimited virtual

registers
a3 = x1 + y2;
ab = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;
a = x + vy;
a = 2z;
b = a;

if we drop the
numbers, the
optimization is
invalid.

Local value numbering w/out adding registers

e Solutions?
a = X *+ ¥Y; | numbering
a = z;
b =x+vy;

a3
ab
b6

X1 + y2;
z4
X1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

o))

X + vy
We cannot optimize the first
line, but we can optimize the

BEEEEE | cconc

C X t+ vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

First we number

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a3 = x1 + y2;
ab = z4;

b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {

}

— la3 = x1 + y2; H = {
a5 = z4; '
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
— a3 = x1 + y2; H = {
a5=z4; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— | c7 = bb6;

Anything else we can add to local value
numbering?

Anything else we can add to local value
numbering?

* Final heuristic: keep sets of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

X+y;
X+y;

Q o O o
1 [| I |
~ m
I

X+y;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

a3 = x1 + y2;

bd = x1 + y2; o
a6 = z5;

c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
bd = a3 H={ but we could have
! “x1l + y2" @ *a3” replaced it with b4!
a6 = z5; }
— |7 = X1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall
}
rewind to
this point a3 = xl1 + Yz; H = {
— > |bd = x1 + y2; ixl + y2r a3
a6 = z5; }
c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
ua" 3,
"b" 4
}
a3 = x1 + y2; {
H =
EE— e °
b4 a3, uxl + y2" . [ua3", ub4"],

a6 = z5; }
c7 = x1 + y2; hash a list of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
b4 = a3; S,
fast forward - a’; “x1 + y2" : [“a3", "b4"],
again a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2; {
H =
fast forward bd = a3; “x1 + y2" : ["a3", "b4"],
again a6 = z5; }
— |c7 = bé;

Local value numbering: Memory

e Consider a 3 address code that allows memory accesses

afi] = x[]J] + y[k];
b[1] = x[]] + y[k];
is this transformation allowed? only if the compiler can prove that a does not alias x and y
No!
a[i] = x[]J] + y[k];
b[i] = a[i]; In the worst case, every time a memory location is updated,
- the compiler must update the value for all pointers.

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

(a[i1,3) = (x[31,1) + (y[k1l,2);
b[i1] = x[]] + y[k];

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (x[]],4) + (y[k]l,5);

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i1,3) = (x[31,1) + (y[k1l,2);

can we trace a, X,y to

(b[i],6) = (x[J1,4) + (y[k1,5); e tea
x = malloc(..);
y = malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i],3) = (x[31,1) + (y[k1,2);
(b[i1,6) = (x[31,1) + (y[kl,2); A A

X malloc(..);

in this case we do not have to update the number
Yy malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1],3) = (x[J1,1) + (y[k],2);
(b[1],6) = (x[]J1,4) + (vI[k],5); programmer annotations can also tell

the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1]1,3)
(b[1]1,6)

= (x[J1,1) + (y[kl,2);
= (x[J],4) + (v[k]l,5);

in this case we do not have to update the number

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (a[1],3);

Optimizing over wider regions
* Local value numbering operated over just one basic block.

* We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

* For this, we need Control Flow Graphs and Flow Analysis
* We may have time to discuss this later in the module

See everyone on Wednesday

* Topics: Loop unrolling

