
CSE110A: Compilers
May 16, 2022

Topics:
• Basic blocks
• Local value numbering

Announcements

• New grades:
• HW 2 posted
• Please let us know within 1 week if there are any issues!

• Pending grades
• Midterm (expect by next Friday)

• HW 3 is released
• Due in two weeks from release date
• Get started early; you have all the material you need!
• Packet updated (hopefully for the last time). Just updated the path to classir.h in

ir_compiler.py.
• Keep your eye on piazza for this assignment!

Announcements

• HW 4 should be released by May 23
• This will give you 2 weeks to get it in before the final date (June 7)
• You cannot turn this homework in after June 7

• This is not my policy, it is the department policy!

Quiz

Quiz

Discussion

int x = 1 + 2;
int y = 1 + x * x * x;
int z = x + y * 1 + 2 + 3;
if (z == 2+ y * 1) {

int w = 1 + 2 + 3;
}

Quiz

Discussion

int a = 30;
int b = 9 - (a / 5);
int c;
c = b * 4;
if (c > 10) { c = c - 10; }
return c * (60 / a);

Quiz

Optimization categories

• local optimizations: examine a ”basic block”, i.e. a small region of
code with no control flow.
• Regional optimizations: several basic blocks with simple control flow.
• Global optimization: optimizes across an entire function

machine
code

target code
gen

target code
optimizations

loop!

loop!

IR programs

optimized IR
program

IR Analysis/
Optimization

What IRs do we have at this point?

virtual_reg vr3;
virtual_reg _new_name0;
virtual_reg _new_name1;
vr0 = int2vr(5);
_new_name0 = vr0;
vr1 = int2vr(6);

3 address code

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

AST

if_else_statement := IF LPAR expr RPAR statement ELSE statement

if (program0) {
program1

}
else {
program2

}

Implicit parse tree

We have several structures to utilize
to analyze and optimize programs!

Optimization categories

• local optimizations: examine a ”basic block”, i.e. a small region of
code with no control flow.
• Regional optimizations: several basic blocks with simple control flow
• Global optimization: optimizes across an entire function

Discussion:
• What are the pros and cons of each?
• Why don’t we go further than functions?

Basic blocks

IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block

IR Program structure

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block

Two Basic Blocks

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

IR Program structure

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a
high-level language? What are some
examples?

Single Basic Block

Two Basic Blocks

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

IR Program structure

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a
high-level language?

…
if (x) {

…
}
else {
…

}
…

Single Basic Block

Two Basic Blocks

How many basic blocks?

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

Converting 3 address code into basic blocks

• Let’s try an example: test 4 in HW 3:

Converting 3 address code into basic blocks

• Simple algorithm:
• keep a list of basic blocks
• a basic block is a list of instructions

• Iterate over the 3 address instructions
• if you see a branch or a label, finalize the current basic block and start a new

one.
• otherwise just add the current instruction to the current basic block

Converting 3 address code into basic blocks

pseudo code

basic_blocks = []
bb = []
for instr in program:

if instr type is in [branch, label]:
bb.append(instr)
basic_blocks.append[bb]
bb = []

else:
bb.append(instr)

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure

Label_0:
x = a + b;
y = a + b;

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT
always optimized

to

Label_0:
x = a + b;

Label_1:
y = x;

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT
always optimized

to

Label_0:
x = a + b;

Label_1:
y = x;

br Label_1;

Label_0:
x = a + b;

Label_1:
y = a + b;

code could skip Label_0,
leaving x undefined!

Regional Optimization
…
if (x) {

…
}
else {

x = a + b;
}
y = a + b;
…

we cannot replace:
y = a + b.

with
y = x;

Regional Optimization
…
if (x) {

…
}
else {

x = a + b;
}
y = a + b;
…

we cannot replace:
y = a + b.

with
y = x;

x = a + b;
if (x) {

…
}
else {

…
}
y = a + b;
…

But in this case, we can check if a
and b are not redefined, then

y = a + b;
can be replaced with

y = x;

This requires regional analysis

Local value numbering

• A local optimization over 3 address code

• Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

• Can be extended to a regional optimization using flow analysis

Local value numbering

• A local optimization over 3 address code

• Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

• Can be extended to a regional optimization using flow analysis

a = b + c;
b = a - d;
c = b + c;
d = a - d;

Local value numbering

• A local optimization over 3 address code

• Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

• Can be extended to a regional optimization using flow analysis

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = a;
d = a - d;

valid?

Local value numbering

• A local optimization over 3 address code

• Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

• Can be extended to a regional optimization using flow analysis

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = a;
d = a - d;

valid? No! Because b is redefined

Local value numbering

• A local optimization over 3 address code

• Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

• Can be extended to a regional optimization using flow analysis

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

valid?

Local value numbering

• A local optimization over 3 address code

• Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

• Can be extended to a regional optimization using flow analysis

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

valid?

yes!

Local value numbering

Algorithm:
• Provide a number to each variable. Update the number each time the

variable is updated.

• Keep a global counter; increment with new variables or assignments

a = b + c;
b = a - d;
c = b + c;
d = a - d;

Global_counter = 0

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

Global_counter = 7

Algorithm:
• Provide a number to each variable. Update the number each time the

variable is updated.

• Keep a global counter; increment with new variables or assignments

Local value numbering

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

mismatch due to
numberings!

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

Local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = b4;

match!

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}

Algorithm: Now that variables are numbered
• Iterate sequentially through instructions. Keep a hash table of the rhs

(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

What else can we do?

What else can we do?

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Consider this snippet:

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?

x OP y == y OP x

What operators are commutative? Which ones are not?

Adding commutativity to local value
numbering

• For commutative operators (e.g. + *), the analysis should consider a
deterministic order of operands.

• You can use variable numbers or lexigraphical order

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

H = {
}a2 = c1 - b0;

f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

H = {
“c1 - b0” : “a2”,

}

cannot re-order because - is not commutative

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

H = {
“c1 - b0” : “a2”,

}

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,

}

re-ordered because a2 < d3 lexigraphically

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,

}

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,
”b0 - c1” : “c5”,

}

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,
”b0 - c1” : “c5”,

}

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,
”b0 - c1” : “c5”,

}

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = f4;

Local value numbering: commutative
operations
Algorithm optimization:
• for commutative operations, re-order operands into a deterministic

order

Other considerations?

Local value numbering w/out adding registers

• We’ve assumed we have access to an unlimited number of virtual
registers.

• In some cases we may not be able to add virtual registers
• If an expensive register allocation pass has already occurred.

• New constraint:
• We need to produce a program such that variables without the numbers is

still valid.

Local value numbering w/out adding registers

• Example:

a = x + y;
a = z;
b = x + y;

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;

a = x + y;
a = z;
b = a;

numbering

local value
numbering with
unlimited virtual
registers

if we drop the
numbers, the
optimization is
invalid.

Local value numbering w/out adding registers

• Solutions?

a = x + y;
a = z;
b = x + y;

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;

numbering

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a = x + y;
a = z;
b = x + y;
c = x + y;

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a = x + y;
a = z;
b = x + y;
c = x + y;

We cannot optimize the first
line, but we can optimize the
second

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a = x + y;
a = z;
b = x + y;
c = x + y;

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a = x + y;
a = z;
b = x + y;
c = x + y;

First we number

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
}

Current_val = {
}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 3,

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 3,

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 5,

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 5,

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 5,

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Local value numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = b6;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Anything else we can add to local value
numbering?

Anything else we can add to local value
numbering?
• Final heuristic: keep sets of possible values

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a = x + y;
b = x + y;
a = z;
c = x + y;

H = {
}

Current_val = {
}

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = x1 + y2;
a6 = z5;
c7 = x1 + y2;

H = {
}

Current_val = {
}

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : “a3”

}

Current_val = {
“a” : 6,
“b” : 4

}

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : “a3”

}

Current_val = {
“a” : 6,
“b” : 4

}

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : “a3”

}

Current_val = {
“a” : 6,
“b” : 4

}

but we could have
replaced it with b4!

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = x1 + y2;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : “a3”

}

Current_val = {
“a” : 3,

}

rewind to
this point

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : [“a3”, “b4”],

}

Current_val = {
“a” : 3,
”b” : 4

}

hash a list of possible values

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : [“a3”, ”b4”],

}

Current_val = {
“a” : 6,
“b” : 4

}

fast forward
again

Local value numbering: value sets

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = b4;

H = {
“x1 + y2” : [“a3”, ”b4”],

}

Current_val = {
“a” : 6,
“b” : 4

}

fast forward
again

Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?
No!

only if the compiler can prove that a does not alias x and y

In the worst case, every time a memory location is updated,
the compiler must update the value for all pointers.

Local value numbering: Memory

• How to number:
• Number each pointer/index pair

(a[i],3) = (x[j],1) + (y[k],2);
b[i] = x[j] + y[k];

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

can we trace a,x,y to
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],1) + (y[k],2);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

can we trace a,x,y to
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten

in this case we do not have to update the number

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by ain this case we do not have to update the number

Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (a[i],3);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each
instruction

Optimizing over wider regions

• Local value numbering operated over just one basic block.

• We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

• For this, we need Control Flow Graphs and Flow Analysis
• We may have time to discuss this later in the module

See everyone on Wednesday

• Topics: Loop unrolling

