
CSE110A: Compilers
May 13, 2022

Topics: 
• Finish intro to optimizations
• Basic blocks
• Local value numbering



Announcements

• Pending grades
• HW 2 (expect by Monday)
• Midterm (expect by next Friday)

• HW 3 is released
• Due in two weeks from release date
• Get started early; you have all the material you need!
• Packet updated, but nothing major



Quick homework demo



Quiz



Quiz



Quiz

Let’s do the exercise



Quiz



Discussion

• Why might it not be a good idea?



Discussion

• Why might it not be a good idea?
• Instruction cache
• branch predictors

• In practice, compilers rarely unroll by more than 4 or 8.



Quiz



Discussion



Quiz

As always, thanks for your feedback!



Extra quiz question

• What would we need to do to extend our C-simple parse to handle
if/else if/else statements?



Review

We started talking about compiler optimizations.

There’s still much more to say, so let’s pick up there.



Discussion

• What are compiler optimizations?

• Why do we want compiler optimizations?



Discussion

• What are compiler optimizations?
• automated program transforms designed to make code more optimal
• optimal can mean different things

• code optimized for one system might be different for code optimized for a different 
system

• we can optimize for speed, for energy efficiency, or for code size. What else?

• Why do we want the compiler to help us optimize?
• So we can write more maintainable/portable code
• So we don’t have to worry about learning nuanced details about every 

possible system



Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling



Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

int foo() {
int i,j,k;
i = 10;
j = i;
k = j;
return k;

}

int foo() {
int i,j,k;
return 10;

}

constant propagation



Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

What does this save us?



Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

What does this save us?

optimizations at one stage can enable optimizations
at another stage:

for (int i = 0; i < 10; i+=2) {
x = x + 2;

}

provides a bigger window for local analysis



Discussion

• What are some compiler optimizations you know about?

let’s do a few more

int add(int x, int y) {
return x + y;

}

int foo(int x, int y, int z) {
return add(x,y);

}

int foo(int x, int y, int z) {
return x + y;

}

Function inlining

What does this save us? 
code size? speed? the ability to debug? local regions to optimize more?



Discussion

• How do you enable compiler optimizations?



Discussion

• How do you enable compiler optimizations?

• most C/++ compilers
• optimizing for speed

• -O0, -O1, -O2, -O3
• what about O4?

• optimizing for size
• -Os, -Oz

• relax some constraints (especially around floating point):
• -Ofast
• Godbolt example

https://stackoverflow.com/questions/15548023/clang-optimization-levels



Discussion

• How do you enable compiler optimizations?

• most C/++ compilers
• optimizing for speed

• -O0, -O1, -O2, -O3
• what about O4?

• optimizing for size
• -Os, -Oz

• relax some constraints (especially around floating point):
• -Ofast
• Godbolt example

https://stackoverflow.com/questions/15548023/clang-optimization-levels



Discussion

• What are some of the biggest improvements you’ve seen from 
compiler optimizations?



Discussion

• What are some of the biggest improvements you’ve seen from 
compiler optimizations?

• compiler optimizations are great at well-structured, regular loops and 
arrays

• Example: adding together two matrices



Discussion

• What kind of transforms on your code is the compiler allowed to do?

• many_add example



Discussion

• What kind of transforms on your code is the compiler allowed to do?

• many_add example

• Why did we get such a dramatic increase? 



Discussion

• What kind of transforms on your code is the compiler allowed to do?

• many_add example

• Why did we get such a dramatic increase? 
• Programs must maintain their input/output behavior
• Hard to precisely define (and still being discussed in C++ groups)
• input/output can be files, volatile memory, console log, etc.



Discussion

• Extreme example

void foo(int * arr, int n)
{

int i, j;
for (i = 0; i < n - 1; i++)

for (j = 0; j < n - i - 1; j++)
if (arr[j] > arr[j + 1]) {

tmp = arr[j];
arr[j] = arr[j + 1]);
arr[j + 1] = tmp;

}
}

int p(int arr[], int start, int end)
{

int pivot = arr[start];

int count = 0;
for (int i = start + 1; i <= end; i++) {

if (arr[i] <= pivot)
count++;

}

int pivotIndex = start + count;
swap(arr[pivotIndex], arr[start]);

int i = start, j = end;
while (i < pivotIndex && j > pivotIndex) {

while (arr[i] <= pivot) {
i++;

}

while (arr[j] > pivot) {
j--;

}

if (i < pivotIndex && j > pivotIndex) {
swap(arr[i++], arr[j--]);

}
}

return pivotIndex;
}

void foo(int *arr, int n)
{

if (start >= end)
return;

int p = p(arr, m, n);

foo(arr, start, p - 1);

foo(arr, p + 1, end);
}is this transform legal?

code from https://www.geeksforgeeks.org/



Discussion

• Extreme example

void foo(int * arr, int n)
{

int i, j;
for (i = 0; i < n - 1; i++)

for (j = 0; j < n - i - 1; j++)
if (arr[j] > arr[j + 1]) {

tmp = arr[j];
arr[j] = arr[j + 1]);
arr[j + 1] = tmp;

}
}

code from https://www.geeksforgeeks.org/

bubble sort

quick sort

Yes this transform
would be legal!

Could any compiler figure it out?
currently unlikely..

This is a technique called
“super optimizing” and it is
getting more and more interest

int p(int arr[], int start, int end)
{

int pivot = arr[start];

int count = 0;
for (int i = start + 1; i <= end; i++) {

if (arr[i] <= pivot)
count++;

}

int pivotIndex = start + count;
swap(arr[pivotIndex], arr[start]);

int i = start, j = end;
while (i < pivotIndex && j > pivotIndex) {

while (arr[i] <= pivot) {
i++;

}

while (arr[j] > pivot) {
j--;

}

if (i < pivotIndex && j > pivotIndex) {
swap(arr[i++], arr[j--]);

}
}

return pivotIndex;
}

void foo(int *arr, int n)
{

if (start >= end)
return;

int p = p(arr, m, n);

foo(arr, start, p - 1);

foo(arr, p + 1, end);
}is this transform legal?



Moving on



Optimizations
Optimizations

Optimizations

Zooming out again: Compiler Architecture

Front end
input 

program
machine 

code
Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

creates
structure

string

produces
executable code

IRs and type inference type inference are at the boundary of parsing and optimizations



Lexical 
Analysis

input 
program

machine 
code

Intermediate 
code gen

Syntactic 
Analyzer

target code 
gen

target code 
optimizations

loop!

loop!

token stream syntax tree

IR programs

optimized IR 
program

IR Analysis/ 
Optimization

What IRs do we have at this point?



Lexical 
Analysis

input 
program

machine 
code

Intermediate 
code gen

Syntactic 
Analyzer

target code 
gen

target code 
optimizations

loop!

loop!

token stream syntax tree

IR programs

optimized IR 
program

IR Analysis/ 
Optimization

What IRs do we have at this point?

virtual_reg vr3;
virtual_reg _new_name0;
virtual_reg _new_name1;
vr0 = int2vr(5);
_new_name0 = vr0;
vr1 = int2vr(6);

3 address code



Lexical 
Analysis

input 
program

machine 
code

Intermediate 
code gen

Syntactic 
Analyzer

target code 
gen

target code 
optimizations

loop!

loop!

token stream syntax tree

IR programs

optimized IR 
program

IR Analysis/ 
Optimization

What IRs do we have at this point?

virtual_reg vr3;
virtual_reg _new_name0;
virtual_reg _new_name1;
vr0 = int2vr(5);
_new_name0 = vr0;
vr1 = int2vr(6);

3 address code

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

AST



machine 
code

target code 
gen

target code 
optimizations

loop!

loop!

IR programs

optimized IR 
program

IR Analysis/ 
Optimization

What IRs do we have at this point?

virtual_reg vr3;
virtual_reg _new_name0;
virtual_reg _new_name1;
vr0 = int2vr(5);
_new_name0 = vr0;
vr1 = int2vr(6);

3 address code

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

AST

if_else_statement := IF LPAR expr RPAR statement ELSE statement

if (program0) {
program1

}
else {
program2

}

Implicit parse tree

We have several structures to utilize
to analyze and optimize programs!



Optimization categories

• Machine-independent - these optimizations should work well across 
many different systems
• Examples?

• Machine dependent - these optimizations start to optimize the code 
for a given system
• Examples?



Optimization categories

• Machine-independent - these optimizations should work well across 
many different systems
• Examples?
• All the examples we looked at before seem like they will help across many 

systems

• Machine dependent - these optimizations start to optimize the code 
for a given system
• Examples?
• loop chunking for cache line size and vectorization.
• instruction re-orderings to take advantage of processor pipelines.
• fused multiply-and-add instructions



Optimization categories

• Machine-independent - these optimizations should work well across 
many different systems
• Examples?
• All the examples we looked at before seem like they will help across many 

systems

• In this module we will be looking at machine-independent 
optimizations. Module 5 might start to look at others

• What are the pros of machine-independent optimizations?



Optimization categories

Next category level is how much code we need to reason about for the 
optimization.

• local optimizations: examine a ”basic block”, i.e. a small region of 
code with no control flow.
• Examples?

• Regional optimizations: several basic blocks with simple control flow.
• Examples?

• Global optimization: optimizes across an entire function



Optimization categories

• local optimizations: examine a ”basic block”, i.e. a small region of 
code with no control flow.
• Regional optimizations: several basic blocks with simple control flow
• Global optimization: optimizes across an entire function

Discussion:
• What are the pros and cons of each?
• Why don’t we go further than functions?



Optimization categories

• local optimizations: examine a ”basic block”, i.e. a small region of 
code with no control flow.
• Regional optimizations: several basic blocks with simple control flow
• Global optimization: optimizes across an entire function

For this module:
• We will look at two optimizations in detail:
• A local optimization: Local value numbering 
• A regional optimization: Loop unrolling
• We will implement both as homework
• We will discuss several other optimizations and analysis



Basic blocks



IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block



IR Program structure

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block

Two Basic Blocks

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute



IR Program structure

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a 
high-level language? What are some
examples?

Single Basic Block

Two Basic Blocks

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute



IR Program structure

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a 
high-level language?

…
if (x) {

…
}
else {
…

}
…

Single Basic Block

Two Basic Blocks

How many basic blocks?

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute



Converting 3 address code into basic blocks

• Let’s try an example: test 4 in HW 3:



Converting 3 address code into basic blocks

• Simple algorithm:
• keep a list of basic blocks
• a basic block is a list of instructions

• Iterate over the 3 address instructions
• if you see a branch or a label, finalize the current basic block and start a new

one.



Converting 3 address code into basic blocks

pseudo code

basic_blocks = []
bb = []
for instr in program:

if instr type is in [branch, label]:
bb.append(instr)
basic_blocks.append[bb]
bb = []

else:
bb.append(instr)



Optimization levels

• Local optimizations: 
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?



Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;



Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;
y = x;

optimized 
to



Optimization levels

• Local optimizations: 
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized 
to

CANNOT 
always optimized 

to

Label_0:
x = a + b;

Label_1:
y = x;



Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized 
to

CANNOT 
always optimized 

to

Label_0:
x = a + b;

Label_1:
y = x;

br Label_1;

Label_0:
x = a + b;

Label_1:
y = a + b;

code could skip Label_0,
leaving x undefined!



Regional Optimization
…
if (x) {

…
}
else {

x = a + b;
}
y = a + b;
…

we cannot replace:
y = a + b.

with 
y = x;



Regional Optimization
…
if (x) {

…
}
else {

x = a + b;
}
y = a + b;
…

we cannot replace:
y = a + b.

with 
y = x;

x = a + b;
if (x) {

…
}
else {

…
}
y = a + b;
…

But in this case, we can check if a 
and b are not redefined, then

y = a + b;
can be replaced with

y = x;

This requires regional analysis and optimizations



See everyone on Monday

• A concrete optimization: local value numbering


