
CSE110A: Compilers
May 11, 2022

Topics:
• Finishing up scopes for 3 address code
• Homework review
• Start of Module 4

..

.. ..

....

...

... ...

...

AST

CFG

store i32 0, ptr %2
%3 = load i32, ptr %1
%4 = add nsw i32 %3, 1,
store i32 %4, ptr %1
%5 = load i32, ptr %2

3 address code

Announcements

• Pending grades
• HW 2 (expect by Monday)
• Midterm (expect by next Friday)

• HW 3 is released
• Due in two weeks from release date
• We will go over some of it during class today
• Get started early; you have all the material you need!

Review

• Converting statements into ClassIeR

statement := declaration_statement
| assignment_statement
| if_else_statement
| block_statement
| for_loop_statement

Let’s do another one

if_else_statement := IF LPAR expr RPAR statement ELSE statement

{
eat(“IF”);
eat(“LPAR”);
expr_ast = parse_expr()
...
program0 = # type safe and linearized ast
eat(“RPAR”);
program1 = parse_statement()
eat(“ELSE”)
program2 = parse_statement()
...

}

if (program0) {
program1

}
else {
program2

}

We need to convert this
to 3 address code

if_else_statement := IF LPAR expr RPAR statement ELSE statement if (program0) {
program1

}
else {
program2

}

We need to convert this
to 3 address code

program0;
vrX = int2vr(0)
beq(expr_ast.vr, vrX, else_label);
program1
branch(end_label);

else_label:
program2

end_label:

{
eat(“IF”);
eat(“LPAR”);
expr_ast = parse_expr()
...
program0 = # type safe and linearized ast
eat(“RPAR”);
program1 = parse_statement()
eat(“ELSE”)
program2 = parse_statement()
...

}

if_else_statement := IF LPAR expr RPAR statement ELSE statement

{
...
get resources
end_label = mk_new_label()
else_label = mk_new_label()
vrX = mk_new_vr()

make instructions
ins0 = “%s = int2vr(0)” % vrX
ins1 = “beq(%s, %s, %s);” %

(expr_ast.vr, vrX, else_label)
ins2 = “branch(%s)” % end_label

concatenate all programs
return program0 + [ins0, ins1] + program1

+ [ins2, label_code(else_label)]
+ program2 + [label_code(end_label)]

}

if (program0) {
program1

}
else {
program2

}

We need to convert this
to 3 address code

program0;
vrX = int2vr(0)
beq(expr_ast.vr, vrX, else_label);
program1
branch(end_label);

else_label:
program2

end_label:

if_else_statement := IF LPAR expr RPAR statement ELSE statement

{
...
get resources
end_label = mk_new_label()
else_label = mk_new_label()
vrX = mk_new_vr()

make instructions
ins0 = “%s = int2vr(0)” % vrX
ins1 = “beq(%s, %s, %s);” %

(expr_ast.vr, vrX, else_label)
ins2 = “branch(%s)” % end_label

concatenate all programs
return program0 + [ins0, ins1] + program1

+ [ins2, label_code(else_label)]
+ program2 + [label_code(end_label)]

}

class VRAllocator():
def __init__(self):

self.count = 0

def get_new_register(self):
vr = "vr" + str(self.count)
self.count += 1
return vr

if_else_statement := IF LPAR expr RPAR statement ELSE statement

{
...
get resources
end_label = mk_new_label()
else_label = mk_new_label()
vrX = mk_new_vr()

make instructions
ins0 = “%s = int2vr(0)” % vrX
ins1 = “beq(%s, %s, %s);” %

(expr_ast.vr, vrX, else_label)
ins2 = “branch(%s)” % end_label

concatenate all programs
return program0 + [ins0, ins1] + program1

+ [ins2, label_code(else_label)]
+ program2 + [label_code(end_label)]

}

class LabelAllocator():
def __init__(self):

self.count = 0

def get_new_register(self):
lb = ”label" + str(self.count)
self.count += 1
return lb

Compiling Scopes

Scopes

int x;
int y;
x = 5;
{

int x;
x = 6;
y = x;

}

What do x and y hold at the end of the program?

How can we get rid of the {}’s?

Scopes

int x;
int y;
x = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

Scopes

int x;
int y;
x = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

HT0

Scopes

int x_0;
int y;
x = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0

rename

make a new unique name for x

Scopes

int x_0;
int y;
x = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0

Scopes

int x_0;
int y_0;
x = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0

rename

y: (INT, VAR, “y_0”)

make a new unique name for y

Scopes

int x_0;
int y_0;
x = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

search

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

replace
with
new name

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x_1;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x_1;
x = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

lookup

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x_1;
x_1 = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

lookup

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x_1;
x_1 = 6;
y = x;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

lookup

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x_1;
x_1 = 6;
y_0 = x_1;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

lookup

Scopes

int x_0;
int y_0;
x_0 = 5;
{

int x_1;
x_1 = 6;
y_0 = x_1;

}

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

No more need for {}

Scopes

int x_0;
int y_0;
x_0 = 5;
int x_1;
x_1 = 6;
y_0 = x_1;

Let’s walk through it with a symbol table

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

new scope. Add x with a new name

No more need for {}

How do you implement this?

• It is not a “search and replace” preprocess
• You do it during parsing
• Only required for program variables, not IO variables

Class-IR

void test4(float &x) {
int i;
for (i = 0; i < 100; i = i + 1) {

x = x + i;
}

}

Remind ourselves what we are compiling

We only need new names for program
variables, not for IO variables

Scopes

int x;
int y;
x = 5;
{

int x;
x = 6;
y = x;

}

Get the new name put in the symbol table when the declaration
is parsed

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0

make a new unique name for x

Scopes

int x;
int y;
x = 5;
{

int x;
x = 6;
y = x;

}

Use the new names in:
• the lhs side of an assignment statement
• unit nodes in expressions

symbol table hash table stack

x: (INT, VAR, “x_0”)HT0
y: (INT, VAR, “y_0”)

x: (INT, VAR, “x_1”)HT1

unit := ID
| ... How do we know whether to make an IO node or a Var node?

{
id_name = self.to_match[1]
id_data = # get id_data from the symbol table
eat(“ID”)
if (id_data.id_type == IO)

return ASTIOIDNode(id_name, id_data.data_type)
else

return ASTVarIDNode(id_data.new_name, id_data.data_type)
}

building an expression AST, we parse a unit at the base

id_data should contain:
id_type: IO or Var
data_type: int or float
new_name: new unique name

Homework review

End of Module 3

• We went from an implicit parse tree to an explicit AST

• We transformed typed expressions into equivalent untyped
expressions

• We defined a simple 3-address code and compiled expressions and
statements to that 3-address code

• By the end of the homework, you will have a functioning IR compiler!
• ClassIeR is pretty close to an assembly ISA!

Start of module 4: optimizations

Discussion

• What are compiler optimizations?

• Why do we want compiler optimizations?

Discussion

• What are compiler optimizations?
• automated program transforms designed to make code more optimal
• optimal can mean different things

• code optimized for one system might be different for code optimized for a different
system

• we can optimize for speed, for energy efficiency, or for code size. What else?

• Why do we want the compiler to help us optimize?
• So we can write more maintainable/portable code
• So we don’t have to worry about learning nuanced details about every

possible system

Discussion

• What are some compiler optimizations you know about?

Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

int foo() {
int i,j,k;
i = 10;
j = i;
k = j;
return k;

}

int foo() {
int i,j,k;
return 10;

}

constant propagation

Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

What does this save us?

Discussion

• What are some compiler optimizations you know about?

for (int i = 0; i < 10; i++) {
x = x + 1;

}

for (int i = 0; i < 10; i++) {
x = x + 1;
i++;
x = x + 1;

}

loop unrolling

What does this save us?

optimizations at one stage can enable optimizations
at another stage:

for (int i = 0; i < 10; i+=2) {
x = x + 2;

}

provides a bigger window for local analysis

Discussion

• What are some compiler optimizations you know about?

let’s do a few more

int add(int x, int y) {
return x + y;

}

int foo(int x, int y, int z) {
return add(x,y);

}

int foo(int x, int y, int z) {
return x + y;

}

Function inlining

What does this save us?
code size? speed? the ability to debug? local regions to optimize more?

Discussion

• What are some compiler optimizations you know about?

There are many more! This is an active area of research and development

For a rough metric:

git effort shows activities on different files and directories

clang C++/C parser: 3.5K commits
clang AST: 8.7K commits
LLVM transforms/optimizations: 30K commits

The transformation part of the code base
has the most activity by far

Discussion

• How do you enable compiler optimizations?

Discussion

• How do you enable compiler optimizations?

Discussion

• How do you enable compiler optimizations?

• most C/++ compilers
• optimizing for speed

• -O0, -O1, -O2, -O3
• what about O4?

• optimizing for size
• -Os, -Oz

• relax some constraints (especially around floating point):
• -Ofast
• Godbolt example

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Discussion

• How do you enable compiler optimizations?

• most C/++ compilers
• optimizing for speed

• -O0, -O1, -O2, -O3
• what about O4?

• optimizing for size
• -Os, -Oz

• relax some constraints (especially around floating point):
• -Ofast
• Godbolt example

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Does -O3 actually make a difference?

Discussion

2013 research paper

“the performance impact of -O3 over -O2
optimizations is indistinguishable from
random noise.”

Discussion

• What are some of the biggest improvements you’ve seen from
compiler optimizations?

Discussion

• What are some of the biggest improvements you’ve seen from
compiler optimizations?

• compiler optimizations are great at well-structured, regular loops and
arrays

• Example: adding together two matrices

Discussion

• What kind of transforms on your code is the compiler allowed to do?

• many_add example

Discussion

• What kind of transforms on your code is the compiler allowed to do?

• many_add example

• Why did we get such a dramatic increase?

Discussion

• What kind of transforms on your code is the compiler allowed to do?

• many_add example

• Why did we get such a dramatic increase?
• Programs must maintain their input/output behavior
• Hard to precisely define (and still being discussed in C++ groups)
• input/output can be files, volatile memory, console log, etc.

Discussion

• Extreme example

void foo(int * arr, int n)
{

int i, j;
for (i = 0; i < n - 1; i++)

for (j = 0; j < n - i - 1; j++)
if (arr[j] > arr[j + 1]) {

tmp = arr[j];
arr[j] = arr[j + 1]);
arr[j + 1] = tmp;

}
}

int p(int arr[], int start, int end)
{

int pivot = arr[start];

int count = 0;
for (int i = start + 1; i <= end; i++) {

if (arr[i] <= pivot)
count++;

}

int pivotIndex = start + count;
swap(arr[pivotIndex], arr[start]);

int i = start, j = end;
while (i < pivotIndex && j > pivotIndex) {

while (arr[i] <= pivot) {
i++;

}

while (arr[j] > pivot) {
j--;

}

if (i < pivotIndex && j > pivotIndex) {
swap(arr[i++], arr[j--]);

}
}

return pivotIndex;
}

void foo(int *arr, int n)
{

if (start >= end)
return;

int p = p(arr, m, n);

foo(arr, start, p - 1);

foo(arr, p + 1, end);
}

is this transform legal?
code from https://www.geeksforgeeks.org/

Discussion

• Extreme example

void foo(int * arr, int n)
{

int i, j;
for (i = 0; i < n - 1; i++)

for (j = 0; j < n - i - 1; j++)
if (arr[j] > arr[j + 1]) {

tmp = arr[j];
arr[j] = arr[j + 1]);
arr[j + 1] = tmp;

}
}

int p(int arr[], int start, int end)
{

int pivot = arr[start];

int count = 0;
for (int i = start + 1; i <= end; i++) {

if (arr[i] <= pivot)
count++;

}

int pivotIndex = start + count;
swap(arr[pivotIndex], arr[start]);

int i = start, j = end;
while (i < pivotIndex && j > pivotIndex) {

while (arr[i] <= pivot) {
i++;

}

while (arr[j] > pivot) {
j--;

}

if (i < pivotIndex && j > pivotIndex) {
swap(arr[i++], arr[j--]);

}
}

return pivotIndex;
}

void foo(int *arr, int n)
{

if (start >= end)
return;

int p = p(arr, m, n);

foo(arr, start, p - 1);

foo(arr, p + 1, end);
}

is this transform legal?
code from https://www.geeksforgeeks.org/

bubble sort

quick sort

Yes this transform
would be legal!

Could any compiler figure it out?
currently unlikely..

This is a technique called
“super optimizing” and it is
getting more and more interest

Moving on

Optimizations
Optimizations

Optimizations

Zooming out again: Compiler Architecture

Front end
input

program
machine

code
Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

creates
structure

string

produces
executable code

IRs and type inference type inference are at the boundary of parsing and optimizations

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
optimizations

loop!

loop!

token stream syntax tree

IR programs

optimized IR
program

IR Analysis/
Optimization

What IRs do we have at this point?

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
optimizations

loop!

loop!

token stream syntax tree

IR programs

optimized IR
program

IR Analysis/
Optimization

What IRs do we have at this point?

virtual_reg vr3;
virtual_reg _new_name0;
virtual_reg _new_name1;
vr0 = int2vr(5);
_new_name0 = vr0;
vr1 = int2vr(6);

3 address code

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
optimizations

loop!

loop!

token stream syntax tree

IR programs

optimized IR
program

IR Analysis/
Optimization

What IRs do we have at this point?

virtual_reg vr3;
virtual_reg _new_name0;
virtual_reg _new_name1;
vr0 = int2vr(5);
_new_name0 = vr0;
vr1 = int2vr(6);

3 address code

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

AST

machine
code

target code
gen

target code
optimizations

loop!

loop!

IR programs

optimized IR
program

IR Analysis/
Optimization

What IRs do we have at this point?

virtual_reg vr3;
virtual_reg _new_name0;
virtual_reg _new_name1;
vr0 = int2vr(5);
_new_name0 = vr0;
vr1 = int2vr(6);

3 address code

AST<x, int>

AST<+,int>

AST<y, int>

AST<+,float>

AST<5.5, float>

AST

if_else_statement := IF LPAR expr RPAR statement ELSE statement

if (program0) {
program1

}
else {
program2

}

Implicit parse tree

We have several structures to utilize
to analyze and optimize programs!

Optimization categories

• Machine-independent - these optimizations should work well across
many different systems
• Examples?

• Machine dependent - these optimizations start to optimize the code
for a given system
• Examples?

Optimization categories

• Machine-independent - these optimizations should work well across
many different systems
• Examples?
• All the examples we looked at before seem like they will help across many

systems

• Machine dependent - these optimizations start to optimize the code
for a given system
• Examples?
• loop chunking for cache line size and vectorization.
• instruction re-orderings to take advantage of processor pipelines.
• fused multiply-and-add instructions

Optimization categories

• Machine-independent - these optimizations should work well across
many different systems
• Examples?
• All the examples we looked at before seem like they will help across many

systems

• In this module we will be looking at machine-independent
optimizations. Module 5 might start to look at others

• What are the pros of machine-independent optimizations?

Optimization categories

Next category level is how much code we need to reason about for the
optimization.

• local optimizations: examine a ”basic block”, i.e. a small region of
code with no control flow.
• Examples?

• Regional optimizations: several basic blocks with simple control flow.
• Examples?

• Global optimization: optimizes across an entire function

Optimization categories

• local optimizations: examine a ”basic block”, i.e. a small region of
code with no control flow.
• Regional optimizations: several basic blocks with simple control flow
• Global optimization: optimizes across an entire function

Discussion:
• What are the pros and cons of each?
• Why don’t we go further than functions?

Optimization categories

• local optimizations: examine a ”basic block”, i.e. a small region of
code with no control flow.
• Regional optimizations: several basic blocks with simple control flow
• Global optimization: optimizes across an entire function

For this module:
• We will look at two optimizations in detail:
• A local optimization: Local value numbering
• A regional optimization: Loop unrolling
• We will implement both as homework
• We will discuss several other optimizations and analysis

See everyone on Friday

• More about optimizations!

