CSE110A: Compilers

March 30, 2022

* Topics:
* Logistics
* Location

e QOffice hours
* Piazza

* Quiz

* Compiler Overview
 What is a compiler
* What are the different stages of a compiler
* Frontend
* Intermediate
e Backend

Announcements

* New room!
* Previous room only sat 64 students

* Moving to Soc Sci 2 - 71 (Bigger room)
* should help with social distancing as well

* We let everyone on the wait list in (68 students)

e Class is slightly more impacted
* might effect grading time, office hours, etc. but we will do our best

Announcements
* Piazza is up and going!

* Private questions for homework help (especially if you are going to
share code, or ask for clarification on a grade)

* Public questions for framework, programming languages, content,
etc.

* Did anyone set up a discord?

Announcements

Office hours:

* Yanwen:
o« ?7?

e Arrian:
.« ??

* Neal:
.« ??

Background

What classes have you taken:

CSE 103
CSE 120
CSE 130

No Answer

18 respondents
32 respondents
27 respondents

1 respondent

50 %
89 %

75 %
3%

) I

Background

Have you programmed in Python before?

Yes, a lot
Yes, a little
No

It is worthwhile to learn!

https://www.tiobe.com/tiobe-index/

19 respondents
16 respondents

2 respondents

51 %

43 %
5%

https://www.tiobe.com/tiobe-index/

What do people hope to get out of this class?

A few answers that | liked:

“I don’t know too much about compilers and | want to learn!”
* “learning about compilers will make me a better programmer”
* “Increase knowledge about computer science”

e “Want to make my own programming language”

* “Why programming languages are the way they are”

Quiz
* Thank you for all your thoughtful answers!

e We will decide on what to do about masks later

Review

* Normally we would do a review here, but nothing too much to review

Schedule

* Introduction to compilers

* Compiler architecture

Schedule

* Introduction to compilers

* Compiler architecture

What is a compiler?

Let’s discuss

What is a compiler?

Let’s discuss

What are some of your favorite compilers

Let’s discuss

title: "Fundamentals of Compiler Design"
layout: single

Welcome to **CSE110A:xx _Fundamentals of Compiler Design_, Spring 2022 Quarter at UCSC!

O oo NOOWL B WN P

- skInstructor:xx [Tyler Sorensen] (https://users.soe.ucsc.edu/~tsorensen/)

10 - xxTime:** Mondays, Wednesdays and Fridays: 4:00 - 5:05 pm

11 - sxxLocation:xx Porter 144

12

13 Hello and welcome to the fundamentals of compiler design class!

14

15 In this class you will learn about compiler design and implementation. In the abstract, compilers explore many of the [foundational problems in computer
science] (https://en.wikipedia.org/wiki/Halting_problem). In practice, compilers are [massive pieces of well-oiled software]
(https://www.phoronix.com/scan.php?page=news_item&px=MTg30TQ), and are some of the engineering marvels of the modern world.

16

17 _COVID Note_ : The last few years have been difficult due to the COVID pandemic. Public health concerns and policies remain volatile. The first priority in

this class in your health and well-being. We will approach any challenges that arise with compassion and understanding. I expect that you will do the same,
both to the teaching staff and to your classmates. We will follow university guidelines and work together to have a productive and fun quarter.

18

Fundamentals of Compiler Design

Welcome to CSE110A: Fundamentals of Compiler

Design, Spring 2022 Quarter at UCSC! Building this website started with:
e, « Markdown to describe the page
¢ Time: Mondays, Wednesdays and Fridays: 4:00 - 5:05 pm
* Location: Porter 144 e compiled with Jekyll to a static webpage
Hello and welcome to the fundamentals of compiler design class! ° StatIC WEbpage |S |n HTML and Javascrlpt

In this class you will learn about compiler design and
implementation. In the abstract, compilers explore many of the
foundational problems in computer science. In practice, compilers
are massive pieces of well-oiled software, and are some of the
engineering marvels of the modern world.

v

Canon

What is a compiler?

Input g

Compiler) Output

What is a compiler?

Input g

Compiler g Output

This is way too general to be useful
Any program fits this description.

What is a compiler?

Input g Compiler) Output
Strings belonging to Strings belonging to
language L language I

A theoretical answer

title: "Fundamentals of Compiler Design"
layout: single

Welcome to **CSE110A:xx _Fundamentals of Compiler Design_, Spring 2022 Quarter at UCSC!

O oo NOOWL B WN P

- skInstructor:xx [Tyler Sorensen] (https://users.soe.ucsc.edu/~tsorensen/)

10 - xxTime:** Mondays, Wednesdays and Fridays: 4:00 - 5:05 pm

11 - =xxLocation:sx Porter 144

12

13 Hello and welcome to the fundamentals of compiler design class!

14

15 In this class you will learn about compiler design and implementation. In the abstract, compilers explore many of the [foundational problems in computer
science] (https://en.wikipedia.org/wiki/Halting_problem). In practice, compilers are [massive pieces of well-oiled software]
(https://www.phoronix.com/scan.php?page=news_item&px=MTg30TQ), and are some of the engineering marvels of the modern world.

16

17 _COVID Note_ : The last few years have been difficult due to the COVID pandemic. Public health concerns and policies remain volatile. The first priority in

this class in your health and well-being. We will approach any challenges that arise with compassion and understanding. I expect that you will do the same,
both to the teaching staff and to your classmates. We will follow university guidelines and work together to have a productive and fun quarter.

18

Fundamentals of Compiler Design

Welcome to CSE110A: Fundamentals of Compiler

Design, Spring 2022 Quarter at UCSC! Building this website started with:
e, « Markdown to describe the page
¢ Time: Mondays, Wednesdays and Fridays: 4:00 - 5:05 pm
* Location: Porter 144 e compiled with Jekyll to a static webpage
Hello and welcome to the fundamentals of compiler design class! ° StatIC WEbpage |S |n HTML and Javascrlpt

In this class you will learn about compiler design and
implementation. In the abstract, compilers explore many of the
foundational problems in computer science. In practice, compilers

are massive pieces of well-oiled software, and are some of the T h i s WO u I d b e a Co m p i I e r

engineering marvels of the modern world.

What is a compiler?

A more traditional description
What are some examples here?

Input g

Compiler) Output

Strings belonging to Strings belonging to
language L language U
A series of statements in An executable binary file

programming language L in an ISA language

What is a compiler?

A classic example

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What is a compiler?

int main() {
printf("hello world\n");

+
gcc main.c
Input g Compiler) Output
Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What is a compiler?

int main() {
printf("hello world\n");
I3

gcc main.c

Input g

Compiler

Strings belonging to
language L

A series of statements in
programming language L

A program written in C gcc/clang

)

What is wrong with this picture?

$./a.out
hello CSE 110A

Output

Strings belonging to
language I

An executable binary file
in an ISA language

An x86 Binary executable

What is a compiler?

A valid input must have a equivalent valid output.
Semantic equivalence

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What is a compiler?

int main() {
printf("hello world\n");
I3

gcc main.c

Input g

Compiler

Strings belonging to
language L

A series of statements in
programming language L

A program written in C gcc/clang

)

What is wrong with this picture?

$./a.out
hello CSE 110A

Output

Strings belonging to
language I

An executable binary file
in an ISA language

An x86 Binary executable

What is a compiler?

int main() { $./a.out
printf("hello world\n"); hello world

}

gcc main.c

Input g

Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What is a compiler?

Input g

Strings belonging to
language L

A series of statements in
programming language L

A program written in C

Compiler

gcc/clang

What else does a compiler give you?

”
g Output

Strings belonging to
language I

An executable binary file
in an ISA language

An x86 Binary executable

What IS G COm,U//EI'p What are some examples here?

Analysis

”

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

Demo

* What are some examples of code that might give a warning?

What can happen when the Input isn’t valid?

int foo() {
int Xx;
int y = x;
return y;

}

Try running this through the compiler

What can happen when the Input isn’t valid?

: int foo(int condition) {
int -FOO() { int x;

int Xx; if (condition) {

. X = 5;

int y = X; }

return y; izzu¥n=y{<;
¥)

What about this one?

Try running this through the compiler

What is a compiler?

A valid input must have a equivalent valid output.
Semantic equivalence

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

What can happen when the Input isn’t valid?

int foo() {
int my_var = 5;
my_var = my_car + 5;
return my_var

¥

Try running this through a compiler

What can happen when the Input isn’t valid?

int foo() {
int my_var = 5;
my_var = my_car + 5;
return my_var

¥

Try running this through a compiler

You get an error and a suggestion these days

What can happen when the Input isn’t valid?

int foo() {
int *x = malloc(100*sizeof(int));
return x[100];

¥

What about this one? No error...

What sort of errors are compilers good at catching?
What ones are they not?

What IS G COm,U//EI'p What are some examples here?

Warnings
Errors

Ana|VSIS Performance logs

”

Compiler) Output

Input g

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

How can we know what the compiler is
doing?

#tdefine SIZE (1024*1024)
int add(int * a, int * b, int * ¢) {
for (int 1 = ©0; 1 < SIZE; i++) {
a[i] = b[1] + c[1i];
}

return 9;

}
Use the compiler flags

-Rpass-missed=loop-vectorize
-Rpass=loop-vectorize

Does the compiler need to perform every
step?

int foo() {
int my var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}

return my_var,

}

Does the compiler need to perform every
step?

int foo() {
int my var = 0;
for (int i = 0; i < 128; i++) {
my_var++;

}

return my_var,

}

Mentally we probably step through the for loop:

Does the compiler need to perform every
step?

int foo() {
int my var
for (int 1
my_var++;

}

return my_var,

}

9;
9; 1 < 128; i++) {

Mentally we probably step through the for loop:

What does the compiler do?

What is a compiler?

A valid input must have a equivalent valid output.
Semantic equivalence

Input g Compiler) Output

Strings belonging to Strings belonging to
language L language I
A series of statements in An executable binary file
programming language L in an ISA language

A program written in C gcc/clang An x86 Binary executable

Does the compiler need to perform every

int foo() {
int my var = 0; int foo() {
for (int i = 0; i < 128; i++) { return 128;
my_var++; }
}
return my_var;
}

are these the same?

Does the compiler need to perform every
step?

int foo() {
int my var = 0; int foo() {
for (int i = 0; i < 128; i++) { return 128;
my_var++; }
}
return my_var;

are these the same?

Functionally - they are the same
Non-functionally - they are not

Most compilers are concerned only with functional equivalence

Schedule

* Introduction to compilers

* Compiler architecture

Compiler Architecture

Compiler Architecture

input program = =P Compiler =) machine code

Compilers are complicated and this image is too simple

Compiler Architecture

input
program

-

_

compiler

~

‘ Front end ‘ Optimizations ‘ ‘

/

Medium detailed view

machine
code

Compiler Architecture

input
program

string

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

-

creates
structure

‘ Front end ‘

parsing

.

compiler

Optimizations

—

optimizations

produces
executable code

Back

end

code gen

=)

build on each other

/

Medium detailed view

machine
code

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Compiler Architecture

What are some of the
benefits of this design?

What are some of the drawbacks

of this design?
/ compiler
creates produces
structure executable code

input
orogram ‘ Front end ‘ Optimizations
string parsing

—

optimizations

Back

end

code gen

=)

machine
code

.

build on each other

/

Medium detailed view

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

https://stackoverflow.com/questions/15548023/clang-optimization-levels

input
program

=)

Lexical
Analysis

Semantic
Analyzer

Syntactic
Analyzer

More detailed view

Intermediate IR

L loop!
code gen optimizations
target code
gen
target code
& loop!

gen

machine
code

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
target code
gen
ISA program
target code loop!

gen

optimized ISA program _
machine

More detailed view code

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
: optimized IR
string token stream syntax tree syntax tree program
. . .. target code
position = initial + rate * 60; gen
ISA program
target code loop!

gen

optimized ISA program _
machine

More detailed view code

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:

. optimized IR
St”ng token stream SyntaX tree Syntax tree program
position = initial + rate * 60; targg;::ode
Token stream
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

target code loop!
id name info gen oop:
1 position float
2 initial float
3 rate float optimized ISA program

machine
Symbol table code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
Token stream target code

gen

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

Syntax tree

/ \) targeé r(1:ode loop!
<id, 1> T — &

<id, 2> / *

\

<id, 3> 60

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
Token stream target code

gen

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

Syntax tree

/ \ target code loop!
gen

: +
<id, 1>
G / \ Can we multiply a

<id, 2> / * float by an integer?

<id, 3> 60

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations '
. optimized IR
string token stream syntax tree syntax tree program
Token stream target code

gen

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

Syntax tree

/ \ target code loop!]

<i + gen p:
id, 1> /// \\\\\\\

///// *

<id, 2>

T

int ‘to_float

<id, 3>

machine
60 code

position = initial + rate * 60;

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations '
optimized IR
token stream SyntaX tree Syntax tree program
Syntax tree
= target code
<id, 1> ///+~\\\\\\
<id, 2> / * ~_
_ int_to_float
<id, 3> target code
loop!
gen
60

IR program

$r0 = int to float(60);

¢rl = %r0 * J..d3; machine
¢rl + id2;

3r2;

o® oo
P R
o N
|_l

Il
Il

code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!]

program Analysis Analyzer Analyzer code gen optimizations p:
optimized IR
token stream SyntaX tree Syntax tree program

IR program
%r0 = int to float(60); targe;t]:ode
¢rl = %r0 * id3; 5
¢r2 = %rl + id2;
$idl = $r2; ISA program

o target code
Optimized IR program loop!

gen

srl = 60.0 * id3;
idl = %rl + id2;

machine
code

position = initial + rate * 60;

IR program

input
program

Lexical
Analysis

=)

token stream

Optimized IR program

srl = 60.0 * id3;
idl = %rl + id2;

ISA program

$1d3
$id2

mul.s $£fO,
add.s Sf1,

60.0,
S£0,

Syntactic Semantic Intermediate IR loop!
Analyzer Analyzer code gen optimizations '
optimized IR
syntax tree syntax tree program
target code
gen
ISA program

target code

8 loop!

gen

(some pseudo code)

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!]
program Analysis Analyzer Analyzer code gen optimizations p:
optimized IR
token stream syntax tree syntax tree program
ISA
>A program target code
mul.s $f0, 60.0, $id3 sen
add.s $f1, $f0, $id2 (some pseudo code)
ISA program
ISA program target code loop!
gen
madd.s S$fl1, 60.0, $id3, $id2
some architectures have fused
multiply and add instructions optimized ISA program

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
optimized IR
token stream SyntaX tree Syntax tree program
target code
gen
ISA program

target code loop!

gen

optimized ISA program _
machine

code

Compiler Architecture

input program = =P Compiler =) machine code

Now you’ve seen a journey through a compiler!

First module

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations '

. optimized IR
St”ng token stream SyntaX tree Syntax tree program
position = initial + rate * 60; targg;::ode
Token stream
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

target code loop!
id name info gen oop:
1 position float
2 initial float
3 rate float optimized ISA program

machine
Symbol table code

Next Class

* Lexical Analysis

