
CSE110A: Compilers
June 3, 2022

Topics:
• Live variable analysis
• Class conclusion

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

Announcements

• Homework 3 grades are out!
• Let us know if there are issues ASAP

• Homework 4 is out
• Due on the date of the final (June 7 by midnight). No late days for this HW

• SETs are out:
• please take some time to fill them out
• It really helps make the classes better in the future

Announcements

• Final is on June 7 (less than 1 week away)
• Similar to Midterm
• Major difference: only 1 day to do it: it will be assigned by 8 AM on June 7 and

due by midnight on June 7.
• No time limit enforced during those hours
• Open note, slides, internet, etc.

• Do not discuss any aspect of the final with classmates while it is out
• Do not discuss (or ask questions about) the test on an online forum; we do monitor these

things!
• Similar length to Midterm

• Designed to take 2-3 hours assuming ~6 hours of studying
• As you saw with the midterm: it is common to spend longer on take home tests

• Cumulative material: Anything discussed in class if fair game.

Announcements

• Final is on June 7 (less than 1 week away)
• We will keep a piazza note with clarification questions
• Ask any clarifications as a private piazza post
• Not guaranteed help outside of business hours
• Help will be guaranteed 7:30 PM to 10:30 PM (the scheduled time of

the test)

No quiz from last time

Review

Control flow graphs

Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;

end_if:
r4 = ...;

Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

Interesting CFGs

CFGs are easiest to construct over 3
address code.

Labels are explicit and it is easy to
partition code into basic blocks

But we can think about CFG patterns
from high level code

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

if/else
pattern

Interesting CFGs

weather current = get_weather();
switch(current) {

case SUNNY :
printf(”Bring sunscreen!\n");
break;

case RAINY :
printf(”Bring an umbrella!\n");

case CLOUDY :
printf(" Bring a jacket!\n");
break;

}
printf("See you soon!\n");

Case statements

weather current = get_weather();

printf(”Bring sunscreen!\n");

printf(”Bring an umbrella!\n");

printf(" Bring a jacket!\n");

printf("See you soon!\n");

Interesting CFGs

Loops

int loop = x;
while(loop!=100) {
printf("inside loop!\n");
loop+=1;

}
printf("outside loop!\n");

int loop = x;
check loop!=100

printf("inside loop!\n");
loop+=1;
check loop != 100;

printf("outside loop!\n");

Interesting CFGs

Loops with a break statement

int loop = x;
while(loop!=100) {
printf("inside loop!\n");
if (loop < 0) {
printf(”breaking!\n");
break;

}
loop+=1;

}
printf("outside loop!\n");

int loop = x;
check loop!=100

printf("inside loop!\n");

printf("outside loop!\n");

printf(”breaking!\n");

loop+=1

CFG demo

• python demo

Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
p

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
px = 5

if (z):
y = 6

else:
y = x

print(y)
print(w)

Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: ?
p

Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: z,w
p

//start
x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Potentially using an uninitialized variable!

Example

• See code in godbolt

int foo(int num) {
int i;
int j;
if (num > 0) {
i = 5;
j = 4;

}
else {
i = 6;

}
return i + j;

}

Example

• See code in godbolt

int foo(int num) {
int i;
int j;
if (num > 0) {
i = 5;
j = 4;

}
else {
i = 6;

}
return i + j;

}

Code gives detailed warning in Clang

No warning in gcc

Example

• See code in godbolt

int foo(int num) {
int i;
int j;
i = 6;
return i + j;

}

Example

• See code in godbolt

int foo(int num) {
int i;
int j;
i = 6;
return i + j;

}
Now code gives warning in gcc

So gcc must only implement their live variable analysis as a local
analysis!

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

LiveOut: ?

LiveOut: ?

LiveOut: ?

LiveOut: ?

LiveOut: ?

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0

B1

B2

B3

B4

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s

Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1
s2

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1
s2 any variable in UEVar(s)

is live at n

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1
s2 any variable in UEVar(s)

is live at nx = a + b

UEVar(s0) = {a,b}

if s0 is just this

Then

These are live at the end of n!

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1
s2 variables that are live

at the end of s, and not
overwritten by s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1
s2 variables that are live

at the end of s, and not
overwritten by s

Liveout(s0) = x,c

Lets say:

x = a + b

if s0 is just this

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {} {}

B0 i {} s {} i

B1 {} i i,s {} i,s

B2 s {} i {} i,s

B3 i,s i,s {} {} i,s

B4 {} s i,s {} {}

Bend {} {} i,s {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} i,s {} {}

B0 i {} s {} i

B1 {} i i,s {} i,s

B2 s {} i {} i,s

B3 i,s i,s {} {} i,s

B4 {} s i,s {} {}

Bend {} {} i,s {} {}

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} i,s {} {} {}

B0 i {} s {} i i,s

B1 {} i i,s {} i,s i,s

B2 s {} i {} i,s i,s

B3 i,s i,s {} {} i,s i,s

B4 {} s i,s {} {} {}

Bend {} {} i,s {} {} {}

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {}

B0 i {} s {} i i,s

B1 {} i i,s {} i,s i,s

B2 s {} i {} i,s i,s

B3 i,s i,s {} {} i,s i,s

B4 {} s i,s {} {} {}

Bend {} {} i,s {} {} {}

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {} s

B0 i {} s {} i i,s i,s

B1 {} i i,s {} i,s i,s i,s

B2 s {} i {} i,s i,s i,s

B3 i,s i,s {} {} i,s i,s i,s

B4 {} s i,s {} {} {} {}

Bend {} {} i,s {} {} {} {}

What if we traversed the CFG in a different
order?

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

Lets do it backwards this time

Traversal order in data flow algorithms

• If your analysis flows backwards (get information from your children)
• You want a post-order traversal
• visit as many children as possible before visiting the parents
• live variable analysis is a backwards flow analysis

• If you flow forward, then you want a reverse post order traversal
• Visit as many parents as possible
• Global constant propagation is an example

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

s = a[x] + 1;

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

s = a[x] + 1;

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

VarKill also needs to know about aliasing

Demo

• Godbolt demo

int foo(int num, int x, int y) {
int i[4];
int j[4];

return i[x] + j[y];
}

Demo

• Godbolt demo

int foo(int num, int x, int y) {
int i[4];
int j[4];

return i[x] + j[y];
}

no warning in clang...

warning in gcc

Demo

• Godbolt demo

int foo(int num, int x, int y) {
int i[4];
int j[4];

j[0] = 0;
i[0] = 0;

return i[x] + j[y];
}

Demo

• Godbolt demo

No more warning.

Thus analysis must not be very precise

int foo(int num, int x, int y) {
int i[4];
int j[4];

j[0] = 0;
i[0] = 0;

return i[x] + j[y];
}

Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

could come from arguments, etc.
n

s0 s1

dead_branch

alive_branch

Live variable limitations

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label_reg

where label_reg is a register that contains a register

n

s2 s3
s0 s1

need to branch to all possible
basic blocks!

Summary

• Global analysis is difficult and often very imprecise

• Algorithms operate over CFGs and model how information can flow
through the CFG

• Live variable analysis can be used to catch potential uses of initialized
variables

• Other data flow instantiations can be used to do global constant
propagation, global copy folding, etc.

Done with lectures!

Recap

• Module 1 - Scanners: using regular expressions to break down programs
into tokens

• Module 2 - Parsing: using context free grammars to turn program strings
into trees

• Module 3 - Intermediate representation: explicitly constructing ASTs,
performing type checking and generating 3 address code

• Module 4 - Optimization and analysis: local, regional, and global
analysis/operations. We can speed up some code significantly and make
code safer

Recap

• Combined, your homeworks compile a non-trivial subset of C into an
(optimized) IR that is very close to an ISA

• Even though Clang and GCC and millions of lines of code long, I hope
this class made them slightly less magical to you!

• My hope is that this class made you think hard about programming
languages, architectures, and how to negotiate between them

• Thank you for your patience as we designed the class!

If you want to work more on your compiler

• Chapter 11: instruction selection
• Different strategies depending on RISC or CISC
• Currently changing landscape in modern computing (ARM, Apple M1, RISC-V)

• Chapter 12: instruction scheduling
• Chapter 13: register allocation

If you are interested in this material

• Grad compilers: Discusses more about data flow analysis, SSA intermediate
representation, and domain specific languages

• Programming languages: Discusses properties of programming languages,
their structure, and their semantics

• Formal methods: Discusses how we can use the source code to prove more
in depth properties about the program (e.g. that there are no bugs)

• Architecture: Discusses how the processor works; however, in order to be
useful, architecture features must be available somehow to the
programmer (usually through a programming language and a compiler)

Tons of opportunities

• Grad school: there is tons of research going on in all of these areas

• Industry:
• Nearly every major tech company has (several) compiler teams now
• Apple: LLVM
• Microsoft: VSCode
• Microsoft: Github
• Nvidia: nvcc
• Intel: icc
• Game dev
• ...

https://mgaudet.github.io/CompilerJobs/

Compilers are going to be increasingly
important in the next era of computing

K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.

computer
raw speed
has leveled off

Number of cores
is starting to level
off

Modern SoC

• From David Brooks lab at
Harvard:

http://vlsiarch.eecs.harvard.
edu/research/accelerators/di
e-photo-analysis/

• Compilers will need to be
able to map software
efficiently to a range of
different accelerators

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

Thanks everyone!!

• For those of you who are graduating: congrats!
• A CS degree is an incredible accomplishment!

• For those of you who are not:
• I hope to see you around next year!

• Don’t be a stranger! We love hearing from you!

• If you have any feedback about the class, please let me know!

• Good luck on the final and enjoy your summer!

