
CSE110A: Compilers
June 1, 2022

Topics: 
• Control flow graphs
• Live variable analysis



Announcements

• Pending grades:
• HW 3
• We will try to get feedback (and hopefully grades) ASAP

• Homework 4 is out
• Get started now if you haven’t already
• Due on the date of the final (June 7 by midnight). No late days for this HW

• SETs are out: 
• please take some time to fill them out 
• It really helps make the classes better in the future



Announcements

• Final is on June 7 (less than 1 week away)
• Similar to Midterm
• Major difference: only 1 day to do it: it will be assigned by 8 AM on June 7 and 

due by midnight on June 7.
• No time limit enforced during those hours
• Open note, slides, internet, etc. 

• Do not discuss any aspect of the final with classmates while it is out
• Do not discuss (or ask questions about) the test on an online forum; we do monitor these 

things!
• Similar length to Midterm

• Designed to take 2-3 hours assuming ~6 hours of studying
• As you saw with the midterm: it is common to spend longer on take home tests

• Cumulative material: Anything discussed in class if fair game.



Announcements

• Final is on June 7 (less than 1 week away)
• We will keep a piazza note with clarification questions
• Ask any clarifications as a private piazza post
• Not guaranteed help outside of business hours
• Help will be guaranteed 7:30 PM to 10:30 PM (the scheduled time of 

the test)
• sad hours I know L



Announcements

• Final grades:
• No curve planned
• Follow standard scale
• Grades are rounded up to nearest 

whole number
• C- is rounded up to a C

• Need a 69.1% to pass

from: https://en.wikipedia.org/wiki/Academic_grading_in_the_United_States



Announcements

• Dealing with missing HW 5
• Originally all HW and midterm were worth 10% each (total 60%)

• I will redistribute HW 5 points either to your midterm grade or your average HW 
grade. Whichever one is higher

• If your HW average is higher than your midterm, then HW average is 50% of 
your grade

• If your midterm average is higher, then your midterm is worth 20% of your 
grade



No quiz from last time



Review



DOALL Loops



DOALL Loops

• requires that loop iterations are independent
• You can do the loop iterations in any order and get the same result

for (int i = 0; i < 2; i++) {
counter += 1;

}

vs

for (int i = 0; i < 2; i++) {
counter = i;

}

are these independent?



for (int i = 0; i < 3; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < 2; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors



for (int i = 0; i < 3; i++) {
a[i] = b[i] + c[i];

}

adds two arrays

1 1 1

0 1 2

a

b

c

index 0 1 2



for (int i = 0; i < 2; i++) {
a[i] += a[i+1]

}

adds elements with neighbors 2 2 2a

index 0 1 2



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

When loop iterations are independent, they are called DOALL loops:
• You can do them in ANY order and get the same results
• If a compiler can find a DOALL loop then there are lots of optimizations

to apply!



Safety Criteria: independent iterations

• How do we check this? 
• If the property doesn’t hold then there exists 2 iterations, such that if they are 

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the 
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from 
the location written to by another iteration.



Motivation: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

Image processing

Taken from Halide:
A project out of MIT



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

you can compute the pixels in any order you want, you just have to compute all of them! 

for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {

output[y,x] = x + y;
}

}
What is the difference
here? What will the difference be?



Adding 2D arrays together

• Memory accesses

𝐴 = 𝐵 + 𝐶

𝐴 𝐵 𝐶



But sometimes there isn’t a good ordering



transposed arrays

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C



from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 4; x_outer+=2) {

for (int x = x_outer; x < x_outer+2; x++) {
output[y,x] = x + y;

}
}

}

Loop splitting:

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {

output[y,x] = x + y;
}

}

What is the difference here?



Chaining optimizations

• First split the loops then reorder



Our new schedule looks like this:

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Why is this beneficial?



blocking

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!



Loop transformation summary
• If the compiler can prove different properties about your loops, you can 

automatically make code go a lot faster

• It is hard in languages like C/C++. But in constrained languages (often called 
domain specific languages (DSLs) it is easier!
• Hot topic right now for Machine learning, graphics, graph analytics, etc!

Main results in from an image DSL show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/



Global Optimization (analysis)

• Loop transforms are a regional analysis
• Compiler works hard to show that code fits a certain pattern

• Global analysis must account for arbitrary patterns

• Generality costs us! Lots of times these optimizations are not as 
effective or precise. 

• But they can still help...



To finish up the class: Live variable analysis

• Not an analysis to make your code go faster

• An analysis to help warn programmers about potential bugs

• Optimizations that make code go faster are really fun but the reality i
that programmers often spend ~70% of their time debugging and 
testing. 

• Compilers can help!!



A new data structure for 3 address code:

• Control flow graph



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;

end_if:
r4 = ...;



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3



Interesting CFGs

CFGs are easiest to construct over 3 
address code.

Labels are explicit and it is easy to 
partition code into basic blocks

But we can think about CFG patterns 
from high level code

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

if/else 
pattern



Interesting CFGs

weather current = get_weather();
switch(current) {

case SUNNY :
printf(”Bring sunscreen!\n" );
break;

case RAIN :
printf(”Bring an umbrella!\n" );

case CLOUDY :
printf(" Bring a jacket!\n" );
break;

}
printf("See you soon!\n" );

Case statements



Interesting CFGs

weather current = get_weather();
switch(current) {

case SUNNY :
printf(”Bring sunscreen!\n" );
break;

case RAIN :
printf(”Bring an umbrella!\n" );

case CLOUDY :
printf(" Bring a jacket!\n" );
break;

}
printf("See you soon!\n" );

Case statements
weather current = get_weather();

printf(”Bring sunscreen!\n" );

printf("See you soon!\n" );

printf(”Bring an umbrella!\n" );

printf(”Bring a jacket!\n" );



Interesting CFGs

Loops

int loop = x;
while(loop!=100) {
printf("inside loop!\n");
loop+=1;

}
printf("outside loop!\n");



Interesting CFGs

Loops

int loop = x;
while(loop!=100) {
printf("inside loop!\n");
loop+=1;

}
printf("outside loop!\n");

int loop = 0;

printf("inside loop!\n");
loop+=1;

printf("outside loop!\n");



Interesting CFGs

Loops with a break statement

int loop = x;
while(loop!=100) {
printf("inside loop!\n");
if (loop < 0) {
printf(”breaking!\n");
break;

}
loop+=1;

}
printf("outside loop!\n");



Interesting CFGs

Loops with a break statement

int loop = x;
while(loop!=100) {
printf("inside loop!\n");
if (loop < 0) {
printf(”breaking!\n");
break;

}
loop+=1;

}
printf("outside loop!\n");

int loop = 0;

printf("inside loop!\n");

printf("outside loop!\n");

loop +=1; printf(”breaking!\n");



Interesting CFGs

• Other constructs to think about:
• Exceptions
• Storing labels in variables



CFG demo

• python demo



Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:



Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
p

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
px = 5

if (z):
y = 6

else:
y = x

print(y)
print(w)



Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: ?
p



Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
p

//start
x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

What are live variables at the start of the program?



Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
p

//start
x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

What are live variables at the start of the program?

a potential use of an uninitialized variable!



Example

• See code in godbolt

int foo(int num) {
int i;
int j;
if (num > 0) {
i = 5;
j = 4;

}
else {
i = 6;

}
return i + j;

}



Example

• See code in godbolt

int foo(int num) {
int i;
int j;
if (num > 0) {
i = 5;
j = 4;

}
else {
i = 6;

}
return i + j;

}

Code gives detailed warning in Clang

No warning in gcc



Example

• See code in godbolt

int foo(int num) {
int i;
int j;
i = 6;
return i + j;

}



Example

• See code in godbolt

int foo(int num) {
int i;
int j;
i = 6;
return i + j;

}
Now code gives warning in gcc

So gcc must only implement their live variable analysis as a local
analysis!



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

LiveOut: ?

LiveOut: ?

LiveOut: ?

LiveOut: ?

LiveOut: ?



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0

B1

B2

B3

B4



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s



Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1
s2



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1
s2 any variable in UEVar(s)

is live at n



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1
s2 variables that are not

overwritten in s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1
s2 variables that are live

at the end of s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1
s2 variables that are live

at the end of s, and not
overwritten by s



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {} {}

B0 i {} s {} i

B1 {} i i,s {} i,s

B2 s {} i {} i,s

B3 i,s i,s {} {} i,s

B4 {} s i,s {} {}

Bend {} {} i,s {} {}

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} i,s {} {}

B0 i {} s {} i

B1 {} i i,s {} i,s

B2 s {} i {} i,s

B3 i,s i,s {} {} i,s

B4 {} s i,s {} {}

Bend {} {} i,s {} {}



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} i,s {} {} {}

B0 i {} s {} i i,s

B1 {} i i,s {} i,s i,s

B2 s {} i {} i,s i,s

B3 i,s i,s {} {} i,s i,s

B4 {} s i,s {} {} {}

Bend {} {} i,s {} {} {}



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {}

B0 i {} s {} i i,s

B1 {} i i,s {} i,s i,s

B2 s {} i {} i,s i,s

B3 i,s i,s {} {} i,s i,s

B4 {} s i,s {} {} {}

Bend {} {} i,s {} {} {}



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {} s

B0 i {} s {} i i,s i,s

B1 {} i i,s {} i,s i,s i,s

B2 s {} i {} i,s i,s i,s

B3 i,s i,s {} {} i,s i,s i,s

B4 {} s i,s {} {} {} {}

Bend {} {} i,s {} {} {} {}



What if we traversed the CFG in a different 
order?



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Lets do it backwards this time



Traversal order in data flow algorithms

• If your analysis flows backwards (get information from your children)
• You want a post-order traversal
• visit as many children as possible before visiting the parents
• live variable analysis is a backwards flow analysis

• If you flow forward, then you want a reverse post order traversal
• Visit as many parents as possible
• Global constant propagation is an example



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

s = a[x] + 1;



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

s = a[x] + 1;

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

VarKill also needs to know about aliasing



Demo

• Godbolt demo

int foo(int num, int x, int y) {
int i[4];
int j[4]; 

return i[x] + j[y];
}



Demo

• Godbolt demo

int foo(int num, int x, int y) {
int i[4];
int j[4]; 

return i[x] + j[y];
}

no warning in clang...

warning in gcc



Demo

• Godbolt demo

int foo(int num, int x, int y) {
int i[4];
int j[4]; 

j[0] = 0;
i[0] = 0;

return i[x] + j[y];
}



Demo

• Godbolt demo

No more warning.

Thus analysis must not be very precise

int foo(int num, int x, int y) {
int i[4];
int j[4]; 

j[0] = 0;
i[0] = 0;

return i[x] + j[y];
}



Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch



Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

could come from arguments, etc.
n

s0 s1

dead_branch

alive_branch



Live variable limitations

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label_reg

where label_reg is a register that contains a register

n

s2 s3
s0 s1

need to branch to all possible
basic blocks!



Summary

• Global analysis is difficult and often very imprecise

• Algorithms operate over CFGs and model how information can flow 
through the CFG

• Live variable analysis can be used to catch potential uses of initialized
variables



See everyone on Friday

• Last day of class!


