
CSE110A: Compilers
April 6, 2022

• Topics:
• Finishing regular expressions

• Using regular expression’s in scanners
• Exact match scanner
• Start-of-string Scanner
• Named group matcher

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Announcements

• HW 1 is released
• By the end of today you should have most of what you need

• We will discuss token actions on Friday which you will need for keywords
• We’ve updated the spec once, there are likely more issues, please let us know!

• Due April 18 by midnight

• We have office hours this week; come see us!

• Let us know any feedback you have about the assignments; they are new!

Announcements

• My office hours:
• Thursday, 3 - 5 PM
• Sign-up sheet goes live around noon
• 10 minute slots

• Other office hours:

Announcements

• Please enroll in Piazza!
• Only 50 students are enrolled. There are ~68 students in the class. People are

asking good clarification questions that will help you

• Docker instructions are on the website. Let us know ASAP if you have
issues

Announcements

• Homework clarifications

For part 1

Any sequence of digits with a . anywhere in it

Announcements

• Homework clarifications

For part 2 - which feeds into part 3,4

Quiz

Integer RE

Integer RE

Does the ”” match the RE?

Fundamental RE operators

Fundamental RE operators

• Fundamental RE operators are:
• Concatenate: put the regexes next to each other
• “|” : Choice: one or the other
• “*” : Repeat: 0 or more copies

• Practically:
• a* roughly is the same as “” | “a” | “aa” | “aaa” ...
• in theory, REs can accept strings of arbitrary length (not infinite strings

though).
• in practice, strings have a reasonable bound. Repeat (*) is a good abstraction

though!

RE examples

RE examples

ac*|b*
• “”
• “ab”
• “acac”
• “acccc”
• “bbb”

Let’s work through them

RE experiences

Review

• Some syntactic sugar and useful interfaces

Regular expressions

• strict repeat operator: +

• one or more repeats (the * operator is 0 or more repeats)

• derivation: “r+” = “rr*”

• Let’s revisit binary numbers and decimal numbers

“(0|1)+”

Regular expressions

• Ranges:
• digits [0-9]
• alpha [a-z], [A-Z]

• Derivation: [0-9] = ”1|2|3|4|5|6|7|8|9”

• Lets try C style IDs: “[a-zA-Z][0-9a-zA-Z]*”

• Hexadecimal numbers: “0x[0-9a-fA-F]+”

Regular expressions

• optional operator ?
• optional characters

• “r?” = “|r”

• Example: “ab?”

• Let’s do simple floating point numbers: “[0-9]+(\.[0-9]+)?”

Regular expressions

• any character ‘.’

• example using email (this is probably too general!)

• ”.*@.*\.com”

Using REs

• What if we want either the domain or user name from the email?

• We can use groups!
• use ()s to deliminate groups

• ”(.*)@(.*\.com)”

• Index the resulting object with [1] and [2] to get to the user name and
domain respectively

Using REs

• you can give groups id names rather than using indices

• “(?P<name>.+)@(?P<domain>.+\.com)”

Review

• Why do we want REs?

Naïve Scanner

simple string stream, peek/eat model

class NaiveScanner:

def token(self):
...
if self.ss.peek_char() in NUMS:

value = ""
while self.ss.peek_char() in NUMS:

value += self.ss.peek_char()
self.ss.eat_char()

return ("NUM", value)

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Shortcomings of Naïve scanner

• IDs with numbers in them?
• x1, y1, etc.
• how would you solve?

• Numbers with a decimal point in them?
• 4.5, 9999.99998
• how would you solve this?

• Two character operators:
• ++, +=
• how would you solve this?

We need a new token definition language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Can we express these tokens using REs?

• ARTICLE = “The|A|Mine|Your”
• NOUN = “Dog|Car|Computer”
• VERB = “Ran|Crashed|Accelerated”
• ADJECTIVE = “Purple|Spotted|Old”

Tokens Tokens Definitions

Can we express these tokens using REs? Yes!

Let’s write our tokens as regular expressions

• For our simple programming language

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “, “\n”]

Let’s write our tokens as regular expressions

• For our simple programming language

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “, “\n”]

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”

Some benefits of REs? Let’s try adding some extensions:

Let’s write our tokens as regular expressions

• For our simple programming language

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “, “\n”]

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”

Some benefits of REs? Let’s try adding some extensions:
* increment operator?
* digits in IDs?

Finishing up last lecture

• A few final thoughts:

RE examples

• What can REs not do?

• Nested structures, such as parathesis matching:
• Try doing arithmetic expressions
• You will not be able to match ()s

• Classical example: REs cannot capture same number of repeats:
• A{N}B{N}

• REs cannot parse HTML!!!
• One of the most upvoted answers on stackoverflow!
• https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-

contained-tags/1732454#1732454

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454

How to implement an RE matcher?

• Overview: first you have to parse the RE...
• Chicken and egg problem
• The language of REs is not a regular language. It is context sensitive (because

it has ()s)

• But once you can parse the RE, there are several options

How to implement an RE matcher?

• parsing with derivatives
• We discuss this in CSE211
• Elegant solution, but difficult to make fast

• Convert to an automata
• Learn more about this CSE103
• A cool website
• https://ivanzuzak.info/noam/webapps/fsm_simulator/

https://ivanzuzak.info/noam/webapps/fsm_simulator/

New material for today

• Using RE matchers to build scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

New material for today

• Using RE matchers to build scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

Do these match?

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

Do any of the tokens match?

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

What if we start “peeking” characters

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

Match!

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

Match! (ID, “v”)

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

Match! (ID, “v”) but what is the issue?

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

Match! (ID, “v”) but what is the issue? Not the longest match

The problem

• How do we move from an RE match to performing lexical analysis on
a string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

[(ID, “variable”), (ASSIGN, “=“),
(NUM, “50”), (PLUS, “+”), (NUM, “30”),
(MULT, “*”), (NUM, ”20”), (SEMI, “;”)]

So what’s our strategy?

New material for today

• Using RE matchers to build scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

start with the whole string

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

start with the whole string
Try to match with all the tokens

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

start with the whole string
Try to match with all the tokens. No match.

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

Try with one character chopped from back
Try to match with all the tokens. No match.

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

So on
Try to match with all the tokens. No match.

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

So on
Try to match with all the tokens. No match.

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

Where do find a match?
Try to match with all the tokens. No match.

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

at this point
we can match id

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

at this point
we can match id

(ID, “variable”)

Return the lexeme

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“ = 50 + 30 * 20;”

Chop the string

(ID, “variable”)

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“ = 50 + 30 * 20;”

Start the process over

(ID, “variable”)

EM Scanner

• Start with the whole string, remove one character at the end until a
match is found. Then return the lexeme

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“ = 50 + 30 * 20;”

Start the process over Where is our next match?

(ID, “variable”)

Look at the code

• Provided in your homework

EM Scanner

• Pros
• Cons

EM Scanner

• Pros
• Uses an exact RE matcher. Many RE match algorithms are exact!

• Cons
• SLOW! Each lexeme requires many many many calls to each RE match!

New material for today

• Using RE matchers to build scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

SOS Scanner

• We will use a new RE match function

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

Feed full string into each token definition

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

Feed full string into each token definition

We get 1 match. We can return the lexeme

(ID, “variable”)

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“variable = 50 + 30 * 20;”

Chop the string

We get 1 match. We can return the lexeme

(ID, “variable”)

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“ = 50 + 30 * 20;”

Chop the string

We get 1 match. We can return the lexeme

(ID, “variable”)

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“ = 50 + 30 * 20;”

What about the next one

(ID, “variable”)

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“ = 50 + 30 * 20;”

What about the next one

(ID, “variable”)

1 match: IGNORE

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“ = 50 + 30 * 20;”

Chop the string

(ID, “variable”)

1 match: IGNORE

SOS Scanner

• The match API gives us a match starting at the beginning of the string

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

“= 50 + 30 * 20;”

Chop the string

(ID, “variable”)

1 match: IGNORE

SOS Scanner

• Consideration

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

SOS Scanner

• Consideration

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

Try to match on each token

SOS Scanner

• Consideration

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

Try to match on each token

Two matches:
LETTERS: “CSE”
CLASS: ”CSE110A”

Which one do we choose?

SOS Scanner

• Consideration

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

Try to match on each token

Two matches:
LETTERS: “CSE”
CLASS: ”CSE110A”

Which one do we choose?
The longest one!

After each pass through token REs
we have to measure match length

SOS Scanner

• Consideration

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

Try to match on each token

Two matches:
LETTERS: “CSE”
CLASS: ”CSE110A”

Which one do we choose?
The longest one!

After each pass through token REs
we have to measure match length

Why didn’t we have to do this for the exact match Scanner?

SOS Scanner

• One more consideration

CLASS = “CSE|110A|CSE110A”
“CSE110A”

Within 1 RE, how does this match?

SOS Scanner

• One more consideration

CLASS = “CSE|110A|CSE110A”
“CSE110A”

Within 1 RE, how does this match?

Returns “CSE”, but this isn’t what we want!!!

SOS Scanner

• One more consideration

CLASS = “CSE|110A|CSE110A”
“CSE110A”

Within 1 RE, how does this match?

Returns “CSE”, but this isn’t what we want!!!

When using the SOS Scanner: A token definition either should not:
• contain choices where one choice is a prefix of another
• order choices such that the longest choice is the first one

SOS Scanner

• One more consideration

CLASS = “CSE|110A|CSE110A”
“CSE110A”

Within 1 RE, how does this match?

Returns “CSE”, but this isn’t what we want!!!

When using the SOS Scanner: A token definition either should not:
• contain choices where one choice is a prefix of another
• order choices such that the longest choice is the first one

CLASS = “CSE110A|110A|CSE”

SOS Scanner

• Pros
• Cons

SOS Scanner

• Pros
• Much faster than EM scanner. Only 1 call to each RE per token() call

• Cons
• Depends on an efficient implementation of match()

• Typically provided in most RE libraries (for this exact reason)

• Requires some care in token definitions and prefixes

New material for today

• Using RE matchers to build scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

SOS Scanner

• Pros
• Much faster than EM scanner. Only 1 call to each RE per token() call

• Cons
• Depends on an efficient implementation of match()

• Typically provided in most RE libraries (for this exact reason)

• Requires some care in token definitions and prefixes

We’re going to optimize this to 1 RE call!
It can really help if you have many tokens

NG Scanner

• We will still use the match API call

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE =

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “[a-z]+”

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “([a-z]+)”

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “([a-z]+)|([0-9]+)”

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “([a-z]+)|([0-9]+)|(..)|”

and so on

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

ID = “[a-z]+”
NUM = “[0-9]+”
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ |\n”
SEMI = “;”

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)
|(..)|”

Give each group a name
corresponding to its token

NG Scanner

• Start out with token definitions
• Merge them into one RE definition

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

It’s a giant RE, but you can construct
it automatically

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

Check the group dictionary in the
result

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

Try to match the whole string to the single RE

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

Return the lexeme (ID, “variable”)

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“variable = 50 + 30 * 20;”

chop!

{”ID” : “variable”
“NUM” : None
“ASSIGN” : None
“PLUS” : None
“MULT” : None
“IGNORE” : None
“SEMI” : None}

Return the lexeme (ID, “variable”)

NG Scanner

• to implement token()

SINGLE_RE = “(?P<ID>[a-z]+)|
(?P<NUM>[0-9]+)|
(?P<ASSIGN>=)|
(?P<PLUS>+)|
(?P<MULT>*)|
(?P<IGNORE> |\n)|
(?P<SEMI>;)”

“ = 50 + 30 * 20;”

chop!

How to deal with common prefixes in token
definitions?
• Recall from SOS scanner:

LETTERS = “[A-Z]+”
NUM = “[0-9]+”
CLASS = ”CSE110A“

“CSE110A”

How to scan this string?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

How to scan this string?

How to deal with common prefixes in token
definitions?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

How to scan this string?

What do we think the dictionary will look like?

How to deal with common prefixes in token
definitions?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

How to scan this string?

{”LETTERS” : “CSE”
“NUM” : None
“CLASS” : None
}

How to deal with common prefixes in token
definitions?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

What does this mean?
• Tokens should not contain prefixes of each other
OR
• Tokens that share a common prefix should be ordered such that the longer token comes first

{”LETTERS” : “CSE”
“NUM” : None
“CLASS” : None
}

How to deal with common prefixes in token
definitions?

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

What does this mean?
• Tokens should not contain prefixes of each other
OR
• Tokens that share a common prefix should be ordered such that the longer token comes first

{”LETTERS” : “CSE”
“NUM” : None
“CLASS” : None
}

How to deal with common prefixes in token
definitions?

• Careful with these tokens

INCR = “++”
ADD = “+”

EQ = “==“
ASSIGN = “=“

How to deal with common prefixes in token
definitions?

Ensure that you provide them in the right order so that the longer one is first!

• Convert to a single RE

SINGLE_RE = “
(?P<LETTERS>([A-Z]+)|
(?P<NUM>([0-9]+)|
(?P<CLASS>CSE110A)”

“CSE110A”

How to scan this string?

What do we think the dictionary will look like?

SINGLE_RE = “(?P<LETTERS>([A-Z]+)|(?P<NUM>([0-9]+)|(?P<CLASS>CSE110A)”

How to deal with common prefixes in token
definitions?

NG Scanner

• Pros

• Cons

NG Scanner

• Pros
• FAST! Only 1 RE call per token()

• Cons
• Requires a named group RE library
• inter-token interactions need to be considered

Scanners we have discussed

• Naïve Scanner

• RE based scanners
• Exact match (EM) scanners
• Start-of-string (SOS) scanners
• named group (NG) scanners

Which one to use?
Complex decision with performance, expressivity, and token requirements

On Friday

• We will discuss token actions and how to use them to implement
keywords and line numbers

• We will discuss a classic scanner generator: lex

• See you on Friday!

