
CSE110A: Compilers
April 4, 2022

• Topics:
• Lexical Analysis:

• Short comings of naïve scanner

• Regular expressions:
• Recursive definition
• Syntactic sugar
• groups

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Announcements

• HW 1 will be released by midnight tonight
• You have what you need to start working on part 1
• You will have what you need for part 2 after Wednesday
• You will have what you need for part 3 after Friday

• Due one week from today (by midnight)

• We will have office hours this week, come see us!

Announcements

• My office hours:
• Thursday, 3 - 5 PM
• Sign-up sheet goes live around noon
• 10 minute slots

• Other office hours:

Announcements

• Docker setup instructions are available

• https://sorensenucsc.github.io/CSE110A-sp2022/homework-setup.html

• We will add the required software needed for the HWs to the docker
image.

• Please try this out over the next few days and let us know if you have issues

• Your code must run in the docker to be graded!
• There can be tons of tiny differences when developing Python natively
• If you want packages installed globally, let us know!

https://sorensenucsc.github.io/CSE110A-sp2022/homework-setup.html

Quiz

Scanner API

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex_(software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Scanner API

Constructor, generates a Scanner
s = ScannerGenerator(tokens)

The string we want to do
lexical analysis on
s.input(“My Old Computer Crashed“)

Returns the next lexeme
s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()
(ARTICLE, “My”)
> s.token()
(ADJECTIVE, “Old”)
> s.token()
(NOUN, “Computer”)
> s.token()
(VERB, “Crashed”)
> s.token()
None

Scanning vs. Parsing

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex_(software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Parsing is the first step in a compiler

• How do we parse a sentence in English?

My dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

My My My My My My

ARTICLE ARTICLEARTICLE ARTICLE ARTICLE ARTICLE

Lexical analysis doesn’t care about the order of tokens. Just so long as there are valid tokens.

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex_(software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Parsing is the first step in a compiler

• How do we parse a sentence in English?

My My Quietly My My My

What happens here?

Parsing is the first step in a compiler

• How do we parse a sentence in English?

My My Quietly My My

ARTICLE ARTICLE ?

What happens here?

Scanner error here. Many scanners stop and report the error location

Parsing is the first step in a compiler

• How do we parse a sentence in English?

My My Quietly My My

ARTICLE ARTICLEARTICLE ? ARTICLE

What happens here?

Scanner error here. Some scanners try to recover and keep going (difficult, and requires ad hoc rules)

Scanning vs. Parsing

False! The order of tokens will be checked by the parser later on!

Scanning a simple PL statement

Scanning a simple PL statement

for (int i = 0; i <= 5; i++)

Scanning a simple PL statement

for (int i = 0; i <= 5; i++)

[(ID, “for”), (PAR, “(“), (ID, “int”), (ID, “i”),
(ASSIGN, “=“), (NUM, “0”), (SEMI, “;”), (ID, “i”),
(LE, “<=“), (NUM, “5”), (SEMI, “;”), (ID, “i”),
(INCR, “++”), (PAR, “)”)]

Scanning a simple PL statement

for (int i = 0; i <= 5; i++)

[(ID, “for”), (PAR, “(“), (ID, “int”), (ID, “i”),
(ASSIGN, “=“), (NUM, “0”), (SEMI, “;”), (ID, “i”),
(LE, “<=“), (NUM, “5”), (SEMI, “;”), (ID, “i”),
(INCR, “++”), (PAR, “)”)]

Why not: ”<“ and “=“ separately?

Scanning a simple PL statement

for (int i = 0; i <= 5; i++)

[(ID, “for”), (PAR, “(“), (ID, “int”), (ID, “i”),
(ASSIGN, “=“), (NUM, “0”), (SEMI, “;”), (ID, “i”),
(LE, “<=“), (NUM, “5”), (SEMI, “;”), (ID, “i”),
(INCR, “++”), (PAR, “)”)]

Should these be the same token?

Scanning a simple PL statement

for (int i = 0; i <= 5; i++)

[(ID, “for”), (LPAR, “(“), (ID, “int”), (ID, “i”),
(ASSIGN, “=“), (NUM, “0”), (SEMI, “;”), (ID, “i”),
(LE, “<=“), (NUM, “5”), (SEMI, “;”), (ID, “i”),
(INCR, “++”), (RPAR, “)”)]

Should these be the same token? Probably not

Review

Naïve implementation

• A scanner that implements

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Naïve implementation

Building block: class StringStream:
def __init__(self, input_string):

self.string = input_string

def is_empty(self):
return len(self.string) == 0

def peek_char(self):
if not self.is_empty():

return self.string[0]
return None

def eat_char(self):
self.string = self.string[1:]

Naïve implementation

First step in implementing the scanner

class NaiveScanner:

def __init__(self, input_string):
self.ss = StringStream(input_string)

def token(self):

while self.ss.peek_char() in IGNORE:
self.ss.eat_char()

if self.ss.is_empty():
return None

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Naïve implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):
...
if self.ss.peek_char() == "+":

value = self.ss.peek_char()
self.ss.eat_char()
return ("ADD", value)

if self.ss.peek_char() == "*":
value = self.ss.peek_char()
self.ss.eat_char()
return ("MULT", value)

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Naïve implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):
...
if self.ss.peek_char() in NUMS:

value = ""
while self.ss.peek_char() in NUMS:

value += self.ss.peek_char()
self.ss.eat_char()

return ("NUM", value)

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Schedule

• Naïve Parser:
• Code demo and discussion

• Regular expressions

Code Demo

Shortcomings of Naïve scanner

• Any thoughts?

Shortcomings of Naïve scanner

• IDs with numbers in them?
• x1, y1, etc.
• how would you solve?

• Numbers with a decimal point in them?
• 4.5, 9999.99998
• how would you solve this?

• Two character operators:
• ++, +=
• how would you solve this?

Shortcomings of Naïve scanner

• IDs with numbers in them?
• x1, y1, etc.
• how would you solve?

• Numbers with a decimal point in them?
• 4.5, 9999.99998
• how would you solve this?

• Two character operators:
• ++, +=
• how would you solve this?

Things get really hacky
really quickly!

Creates
a bad design that is
not easily extended
or maintained

How do we solve this?

A new token definition language:
• Regular expressions
• Tokens will be defined using regular

expressions
• Scanners can then utilize regular expression

matchers

Benefits:
• Extensible design

• easy to add new tokens, modify existing
definitions

• Modular
• Scanner can utilize common regex libraries

Cons:
• Token definitions are restricted to regular

languages

• Potentially slower

• Regular expression matchers are complicated

How do we solve this?

A new token definition language:
• Regular expressions
• Tokens will be defined using regular

expressions
• Scanners can then utilize regular expression

matchers

Benefits:
• Extensible design

• easy to add new tokens, modify existing
definitions

• Modular
• Scanner can utilize common regex libraries

Cons:
• Token definitions are restricted to regular

languages

• Potentially slower

• Regular expression matchers are complicated

Schedule

• Naïve Parser:
• Code demo and discussion

• Regular expressions

Regular expressions

Some theory:

• Given a language L, a string s is either part of that language or not
• Integers are a language: “5”, “6”, “-7” is in the language. “abc” is not.

• Languages are grouped into families depending on how “hard” it is to
determine if a string is part of that language.

Regular expressions

image source: wikipedia

The simplest languages are regular. We will
use regular languages as our token language.

We will use the next level: context-free, as the
language for our parser.

Higher levels are interesting, but not as useful
in compilers. Why?

Regular expressions

image source: wikipedia

The simplest languages are regular. We will
use regular languages as our token language.

We will use the next level: context-free, as the
language for our parser.

Higher levels are interesting, but not as useful
in compilers. Why?

Because deciding if a string is in a recursively
enumerable language is undecidable.

Regular expressions

image source: wikipedia

What is a regular language?

Regular expressions

image source: wikipedia

What is a regular language?

For this class: A regular language is a language
that can be expressed as a regular expression.

Regular expressions

image source: wikipedia

What is a regular language?

For this class: A regular language is a language
that can be expressed as a regular expression.

What is a regular expression?

Schedule

• Naïve Parser:
• Code demo and discussion

• Regular expressions

Regular expressions

• We will define regular expressions (RE) recursively

• We will show examples at each step.

• And show to match them in Python
• A string matches an RE if it belongs to the regular language defined by the RE
• Python has a great RE matching library

Regular expressions

import the library
import re

pattern is a string representing the RE
the function reports whether string matches RE
re.fullmatch(pattern, string)

Regular expressions

• We will define regular expressions (RE) recursively

• Like any recursive function, we can start with the base case:

a regular expression can be a single character or the empty string

Regular expressions

• We will define regular expressions (RE) recursively

• Like any recursive function, we can start with the base case:

a regular expression can be a single character or the empty string

Example:
ASSIGN = “=“
PLUS = ”+”

Python:
import re
re.fullmatch(“=“, “=“)

re.fullmatch(“+”, “+”) # what happens here?

Regular expressions

• When we define regular expressions, some characters are special.
• They are operators in the regular expression language
• If we want to use them as a character, then we need to ”escape them” with a \
• “+” happens to be one of those characters

https://riptutorial.com/regex/example/15848/what-characters-need-to-be-escaped-

Python:
import re
re.fullmatch(“=“, “=“)

re.fullmatch(“\+”, “+”) # what happens here?

https://riptutorial.com/regex/example/15848/what-characters-need-to-be-escaped-

Regular expressions

• We will define regular expressions (RE) recursively

• Like any recursive function, we can start with the base case:

a regular expression can be a single character or the empty string

Python:
import re
re.fullmatch(““, ““)

Not super useful for us,
but useful for the theory

Regular expressions

• First recursive case: concatenation

• Two REs can be concatenated by simply writing them in sequence:
• RE1 = ”a”, RE2 = “b”
• concatenated it is: RE12 = “ab”

• This allows us to build words

Example:
FOR = “for“
WHILE = ”while”

Python:
import re
re.fullmatch(“for“, “for“)
re.fullmatch(“a+b”, “a+b”) # what happens here?

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Can we define these tokens yet?

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Can we define these tokens yet? No, we need one more operator

Regular expressions

• Second recursive operator: choice (sometimes called ”union”, or “or”)

• Two REs can be choiced together using the “|” operator
• RE1 = “a”, RE2 = “b”
• The choice is: RE1|2 = “a|b”
• Matches either

Example:
OP = “*|+“
CMP = “==|<=|>=”

Python:
import re
re.fullmatch(“*|+“, “+“)
re.fullmatch(“==|<=|>=”, “==”)

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Can we define these tokens yet?

• ARTICLE = “The|A|Mine|Your”
• NOUN = “Dog|Car|Computer”
• VERB = “Ran|Crashed|Accelerated”
• ADJECTIVE = “Purple|Spotted|Old”

Tokens Tokens Definitions

Can we define these tokens yet? Yes!

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Can we define these tokens yet?

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Can we define these tokens yet? No!

Regular expressions

• Last recursive operator: Repeat

• Unary operator: *
• RE1 = “a”
• Repeat RE1 zero or more times: ”a*”

Example:
RE1 = “a*“
RE2 = “a*|b*”
RE3 = ”a|b*

Python:
import re
re.fullmatch(“a*|b*“, “aaa“)
re.fullmatch(“a*|b*”, “”)

Regular expressions

• Last recursive operator: Repeat

• Unary operator: *
• RE1 = “a”
• Repeat RE1 zero or more times: ”a*”

Example:
RE1 = “a*“
RE2 = “a*|b*”
RE3 = ”a|b*

Python:
import re
re.fullmatch(“a*|b*“, “aaa“)
re.fullmatch(“a*|b*”, “”)

Precidence?

Regular expressions

• Lets make an RE for binary numbers

• Lets make an RE for decimal numbers

Regular expressions

• These are the theoretical foundational operators.

• Most languages give syntactic sugar to make common cases easier

• Most languages also break the theory
• Perl regexes are extremely complicated

• https://www.perlmonks.org/?node_id=809842

• Python regexes (with recursion) are can capture context free languages
• https://www.npopov.com/2012/06/15/The-true-power-of-regular-

expressions.html#matching-context-free-languages

https://www.perlmonks.org/?node_id=809842
https://www.npopov.com/2012/06/15/The-true-power-of-regular-expressions.html

Regular expressions

• strict repeat operator: +

• one or more repeats (the * operator is 0 or more repeats)

• derivation: “r+” = “rr*”

• Let’s revisit binary numbers and decimal numbers

“(0|1)+”

Regular expressions

• Ranges:
• digits [0-9]
• alpha [a-z], [A-Z]

• Derivation: [0-9] = ”1|2|3|4|5|6|7|8|9”

• Lets try C style IDs:

• Hexadecimal numbers:

Regular expressions

• Ranges:
• digits [0-9]
• alpha [a-z], [A-Z]

• Derivation: [0-9] = ”1|2|3|4|5|6|7|8|9”

• Lets try C style IDs: “[a-zA-Z][0-9a-zA-Z]*”

• Hexadecimal numbers: “0x[0-9a-fA-F]”

Regular expressions

• optional operator ?
• optional characters

• “r?” = “|r”

• Example: “ab?”

• Let’s do simple floating point numbers

Regular expressions

• optional operator ?
• optional characters

• “r?” = “|r”

• Example: “ab?”

• Let’s do simple floating point numbers: “[0-9]+(\.[0-9]+)?”

Regular expressions

• any character ‘.’

• example using email (this is probably too general!)

Regular expressions

• any character ‘.’

• example using email (this is probably too general!)

• ”.*@.*\.com”

Using REs

• What if we want either the domain or user name from the email?

• We can use groups!
• use ()s to deliminate groups

• ”(.*)@(.*\.com)”

• Index the resulting object with [1] and [2] to get to the user name and
domain respectively

Using REs

• you can give groups id names rather than using indices

• “(?P<name>.+)@(?P<domain>.+\.com)”

RE examples

XKCD comic

https://xkcd.com/208/

REs are good for?

• Scanning large amounts of documents quickly, looking for:
• Websites
• Email
• Profiling numbers
• Variable usages
• What else?

RE examples

• What can REs not do?

• Nested structures, such as parathesis matching:
• Try doing arithmetic expressions
• You will not be able to match ()s

• Classical example: REs cannot capture same number of repeats:
• A{N}B{N}

• REs cannot parse HTML!!!
• One of the most upvoted answers on stackoverflow!
• https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-

contained-tags/1732454#1732454

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454

Let’s write our tokens as regular expressions

• For our simple programming language

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

How to implement an RE matcher?

• Overview: first you have to parse the RE...
• Chicken and egg problem
• The language of REs is not a regular language. It is context sensitive (because

it has ()s)

• But once you can parse the RE, there are several options

How to implement an RE matcher?

• parsing with derivatives
• We discuss this in CSE211
• Elegant solution, but difficult to make fast

• Convert to an automata
• Learn more about this CSE103
• A cool website
• https://ivanzuzak.info/noam/webapps/fsm_simulator/

https://ivanzuzak.info/noam/webapps/fsm_simulator/

How to use REs in a scanner implementation?

• We will discuss next class

• See you on Wednesday!

