CSE110A: Compilers ST

April 29, 2022

Topics: CFG

* ASTs / \W

* parse trees into ASTs
* type checking

3 address code

store 132 0, ptr %2

%3 = load 132, ptr %1
%4 = add nsw i32 %3, 1,
store 132 %4, ptr %1
%5 = load 132, ptr %2

Announcements

* HW 2

* Due on Monday by midnight
* There is no guarantee of help on piazza off business hours and weekends
* Neal wrote a recursive descent document you should read for extra help

* HW 3 will be assigned a week from Monday (May 9) so that you only
have the midterm to do next week.

Announcements

HW?2 clarification:

* You do not need to return anything from your parser!

* If the input program satisfies the grammar then you return without issue

* |f it does not, then you throw an exception

e Scanner exception if you cannot create a token
* Parser exception if the input violations the grammar
* Symbol table exception if a variable is used outside of a scope it is declared

* HW 3 will be creating an IR inside your parser.

Announcements

* Midterm will be given on May 2 (Monday)
* Take home midterm.
* Assigned on Monday morning and due on Friday by midnight
No late midterms are accepted - start early so that you can absorb any issues

No help off of business hours. Do not discuss the midterm at all with
classmates, including conceptual, programming, or framework questions.

* Open
* book
* notes
* slides
* lectures

You can use the internet for concepts. You cannot use it to ask questions or
google answers to questions.

Quiz

Parse tree is an Abstract Syntax Tree

(O True

O False

Quiz

If you are writing a compiler on M languages for N target architectures. How many compilers will you
need to write with and without the help of Intermediate Representation?

O M,N
O MN, M+N
O M+N, MN
O MN, NM
O M, NM

O M,N+M

Quiz

Loop unrolling will ____ loop overhead and ____ program code size

() increase, increase
(O increase, reduce
(O reduce, increase

(O reduce, reduce

Check:

Example: loop unrolling

1. Find iteration variable by

examining assignment, _

and update.
for statement 2 found i
/N 3. check that - doesn’t change i.
assignment comparison update statement
update 4. check that _ goes around an

_ even number of times.

Perform optimization
for (i = 0; ENSNEOD; EVSVENFND) {
x =x+ 1; copy - and put an update before
} it

Quiz

Name a few Intermediate Representations you have seen in real life

Review

Compiler Architecture

input
program

string

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

-

creates
structure

‘ Front end ‘

parsing

.

compiler

Optimizations

—

optimizations

produces
executable code

Back

end

code gen

=)

build on each other

/

Medium detailed view

machine
code

https://stackoverflow.com/questions/15548023/clang-optimization-levels

More detailed view

input
program

=)

Lexical
Analysis

Syntactic - Semantic
Analyzer Analyzer

More detailed view

Intermediate IR

L loop!
code gen optimizations
target code
gen
target code
8 loop!

gen

machine
code

input
program

=)

Intermediate IR Analysis/

Lexical Syntactic

R loop!
Analysis Analyzer code gen Optimization P
We’re going to move semantic analysis
into IR optimizations and analysis target code
gen
code
target loop!

gen

machine
More detailed view code

IR programs

Input - Lexical Syntactic Intermediate IR Analysis/ loop!
program Analysis Analyzer code gen Optimization P!
tri optimized IR
string token stream syntax tree program
target code
gen
ISA program
target code loop!

optimizations

optimized ISA program

machine
More detailed view code

IR programs

Input - Lexical Syntactic Intermediate IR Analysis/ loop!
program Analysis Analyzer code gen Optimization P!

tri optimized IR

string token stream syntax tree program

. . .. target code
position = initial + rate * 60; gen
ISA program
target code loop!

gen

optimized ISA program

machine
More detailed view code

IR programs

Input - Lexical Syntactic Intermediate IR Analysis/ loop!]
program Analysis Analyzer code gen Optimization P!
trin " optimized IR
string token stream syntax tree orogram
position = initial + rate * 60; targg;::ode
Token stream
<id,> <assign,=> <id,> <bin op,+> <id,> <bin op,*> <num, 60> <semi, ;>
target code
8 loop!

gen

optimized ISA program

machine
code

position = initial + rate * 60;

IR programs

Input - Lexical Syntactic Intermediate IR Analysis/ loop!
program Analysis Analyzer code gen Optimization P!

tri optimized IR
string token stream syntax tree program
Token stream target code

gen

<id,> <assign,=> <id,> <bin op,+> <id,> <bin op,*> <num, 60> <semi, ;>

Syntax tree
assign

target code
<id 1{ \z\ expr gen loop!
' / \\
<id, 2> / term
+ \\

<id, 3> 60 ,
* machine

code

position = initial + rate * 60;

Input - Lexical Syntactic
program Analysis Analyzer
string token stream syntax tree

assign

. / \\ expr
<id, 1> = - \\

<id, 2> / t\e{

<id, 3> 60

Syntax tree

*

AST _
<id, 1> T —

<id, 2> * ~_

//// 60

<id, 3>

IR programs

Intermediate IR Analysis/

code gen Optimization

target code
gen

target code
gen

machine
code

loop!

optimized IR
program

loop!

position = initial + rate * 60;

mpUt - Lexical
program Analysis

string token stream

AST

T T

<id, 1>

Syntactic

Analyzer

syntax tree

<id, 2>

+\\\\\\\
/

: o float
<id, 3>

IR programs

Intermediate [qAnalysisl

code gen Optimization

target code
gen

target code
gen

machine
code

loop!

optimized IR
program

loop!

position = initial + rate * 60;

IR programs
Input - Lexical Syntactic Intermediate IR Analysis/ loop!
program Analysis Analyzer code gen Optimization P!
optimized IR
token stream SyntaX tree Syntax tree program
AST _
= target code
<id, 1> ¥
' S T
<id, 2> * ~_
_ / int_to_float
<id, 3> target code
loop!
gen
60

3-address code program

$r0 = int to float(60);
grl = %r0 * id3;
¢rl + id2;

machine
Sr2; code

o® oo
P R
o, N
|_l

Il
Il

Intermediate representations

e Several forms:
* tree - abstract syntax tree
e graphs - control flow graph
* linear program - 3 address code

e Often times the program is represented as a hybrid
e graphs where nodes are a linear program
* linear program where expressions are ASTs

* Progression:
* start close to a parse tree
* move closer to an ISA

Intermediate representations

e Several forms:
* tree - abstract syntax tree
e graphs - control flow graph
* linear program - 3 address code

* Different optimizations and analysis are more suitable for IRs in
different forms.

Our first IR: abstract syntax tree

* One step away from parse trees

* Great representation for expressions

* Natural representation to apply type checking

What is an AST?

We'll start by looking at a parse tree:

‘iiiﬁiiﬁiillIiiiiillIiiiﬁiiiiiﬁillllllllll

+

()

tokens

expr ¢ expr PLUS term
| term

term : term TIMES factor
| factor

factor : LPAR expr RPAR
| NUM

[

(NUM, “[0-9]+"),
(TIMES, “*"),
(PLUS, “\+"),
(LPAR, “\(“,
(RPAR, "\)”

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM, ((5”>
<NUM’ lll”>

What is an AST?

We'll start by looking at a parse tree:

‘iiiﬁiiﬁiillIiiiiillIiiiﬁiiiiiﬁillllllllll

+ expr ¢ expr PLUS term
| term

& term : term TIMES factor
| factor

() factor : LPAR expr RPAR
| NUM

tokens = |

(NUM, “[0-9]+"),
(TIMES, “*"),
(PLUS, “\+"),
(LPAR, “\(“,
(RPAR, "\)”

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM, ((5H>
<NUM’ (ll”>

What are leaves?

What is an AST?

We'll start by looking at a parse tree:

‘iiiﬁiiﬁiillIiiiiillIiiiﬁiiiiiﬁillllllllll

+ expr ¢ expr PLUS term
| term

& term : term TIMES factor
| factor

() factor : LPAR expr RPAR
| NUM

tokens = |

(NUM, “[0-9]+"),
(TIMES, “*"),
(PLUS, “\+"),
(LPAR, “\(“,
(RPAR, "\)”

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM, ((5H>
<NUM’ (ll”>

What are leaves? lexemes

What is an AST?

We'll start by looking at a parse tree:

‘iiiﬁiiﬁiillIiiiiillIiiiﬁiiiiiﬁillllllllll

+ expr ¢ expr PLUS term
| term

& term : term TIMES factor
| factor

() factor : LPAR expr RPAR
| NUM

tokens = |

(NUM, “[0-9]+"),
(TIMES, “*"),
(PLUS, “\+"),
(LPAR, “\(“,
(RPAR, "\)”

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM’ 115”>
<NUM’ llll)>

What are nodes?

What is an AST?

We'll start by looking at a parse tree:

‘iiiﬁiiﬁiillIiiiiillIiiiﬁiiiiiﬁillllllllll

+ expr ¢ expr PLUS term
| term

& term : term TIMES factor
| factor

() factor : LPAR expr RPAR
| NUM

tokens = |

(NUM, “[0-9]+"),
(TIMES, “*"),
(PLUS, “\+"),
(LPAR, “\(“,
(RPAR, "\)”

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM’ 115”>
<NUM’ llll)>

What are nodes? non-terminals

What is an AST?

Parse trees are defined entirely by the
grammar

* Tokens

* Production rules

Parse trees are often not explicitly
constructed. We use them to visualize the

parsing computation

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM, ((5”>

<NUM’ (lll’>

in your homework, do you actually make a parse tree?

:= NUM Expr2
:= MINUS NUM Expr2

“n

Expr

T

(NUM, 5) ExXpr2

e

(MINUS,-) (NUM,4) Expr2

P

(MINUS,-) (NUM,3) EXpr2

What is an AST?

Parse trees are defined entirely by the
grammar

* Tokens

* Production rules

Parse trees are often not explicitly
constructed. We use them to visualize the

parsing computation

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM, ((5”>

<NUM’ (lll’>

input: 1+5%6
What is an AST?

What are some differences?

///////////////\\\\\\\\\\\\ iy
- /I"”\
/\ T o =
5 6 /N
term term <TIMES, “*”> factor
factor <NUM, “6">
AST factor ‘
<NUM, 115”>

<NUM’ (ll”>

Parse Tree

input: 1+5%6
What is an AST?

What are some differences?

///////////////\\\\\\\\\\\\ iy
- /I"”\
| /\ T <PLUS’ - =
5 6 /N
term term <TIMES, “*”> factor
factor <NUM, “6">

A ST factor ‘

<NUM, 115”>

<NUM, uln>
 decoupled from the grammar

* |eaves are data, not lexemes
* nodes are operators, not non-terminals Parse Tree

Example

what happens to ()s in an AST?

‘iiiﬁiiiiillIiiiiillIiiiiiiiiiiillllllllll

+

()

expr

term

factor

¢ expr PLUS term

term

term TIMES factor
factor

¢ LPAR expr RPAR

NUM

input:

(1+5)*6

expr

Example

what happens to ()s in an AST?

‘iiiﬁiiiiillIiiiiillIiiiiiiiiiiillllllllll

+ expr ¢ expr PLUS term
| term

* term : term TIMES factor
| factor

() factor : LPAR expr RPAR
| NUM

input: (1+5)*6

expr
\
term
te\rm factor
factor <NUM, “6”>

S

<LPAR’ ll(”> expr <RPAR’ II)H>

e

expr <PLUS,"+"> term

|
\ factor
term |
| <NUM, 115))>
factor
|

<NUM’ Illll>

Example

what happens to ()s in an AST?

No need for (), they simply capture
precedence. And now we have precedence
in the AST tree structure

input: (1+5)%*6

expr
\
term
m
te\rm factor
factor <NUM, “6”>

ST

<LPAR, (l(”> expr <RPAR’ ll)”>

e

expr <PLUS,"+"> term

|
\ factor
term |
| <NUM, 115)1>
factor
|

<NUM, 111”>

formalizing an AST

* A tree based data structure, used to represent expressions

* Main building block: Node
* Leaf node: ID or Number
* Node with one child: Unary operator (=) or type conversion (int to float)
* Node with two children: Binary operator (+, *)

class ASTNode():
def __init_ (self):

pass

class ASTLeafNode(ASTNode):
def __init_ (self, value):
selLf.value = value

class ASTNumNode (ASTLeafNode):
def __init_ (self, value):
super().__init__ (value)

class ASTIDNode(ASTLeafNode):
def __init_ (self, value):
super().__init__ (value)

class ASTBinOpNode (ASTNode):
def __init__ (self, 1_child,
self.l _child = 1 _child
selLf.r_child r child

r_child):

class ASTPlusNode(ASTBinOpNode):
def _init_ (self, 1 _child, r_child):
super().__init__ (1_child, r_child)

class ASTMultNode(ASTBinOpNode):
def _init_ (self, 1_child, r_child):
super().__init__ (1_child, r_child)

Creating an AST from production rules

expr expr PLUS term
term
* term : term TIMES factor {}
| factor {}
() factor : LPAR expr RPAR {}
| NUM {}

| ID {}

Creating an AST from production rules

expr expr PLUS term {return ASTAddNode($1,$3)}
term {return $1}
* term : term TIMES factor {return ASTMultNode($1,$3)}
| factor {return $1}
() factor : LPAR expr RPAR {return $2}
| NUM {return ASTNumNode($1)}

| ID {return ASTIDNode($1)}

W tnputs (115)76

expr expr PLUS term {return ASTAddNode($1,$3)} EXpr
term {return $1} \
term

term : term TIMES factor {return ASTMultNode($1,S$3)}

| factor {return $1}
factor : LPAR expr RPAR {return $2} e

| NUM {return ASTNumNode($1)} term <TIMES, > ¢

| ID {return ASTIDNode($1)} \ ac‘tor

factor <NUM, “6”>

Lets build the AST /N

<LPAR, “("> expr <RPAR, “)">

e

expr <PLUS+"> term
|
\ factor
term |
| <NUM, 115))>
factor

|
<NUM’ Illll>

W tnputs (115)76

expr expr PLUS term {return ASTAddNode($1,$3)} EXpr
term {return $1} \
term

term : term TIMES factor {return ASTMultNode($1,S$3)}

| factor {return $1}
factor : LPAR expr RPAR {return $2} e

| NUM {return ASTNumNode($1)} term <TIMES, > ¢

| ID {return ASTIDNode($1)} \ ac‘tor

factor <NUM, “6”>

Lets build the AST /N

<LPAR, “("> expr <RPAR, “)">

e

expr <PLUS+"> term
|
\ factor
term |
| <NUM, 115))>
factor

AST<1> |
<N U M’ Ill”>

ASTAddNode($1,$3)}

expr expr PLUS term {return
term {return

term : term TIMES factor {return
| factor {return

factor : LPAR expr RPAR {return
| NUM {return

| ID {return

AST<*>

$1}
ASTMultNode($1,$3)}
$1}

$2}

ASTNumNode (S1)}

ASTIDNode(S$S1)}

T

AST<+>

T T

AST<1> AST<5>

AST<6>

input:

expr
\

term

term

|

factor

S

<LPAR, “(”> expr <RPAR, “)">

////T\\\\

expr <PLUS+"> term

|
\ factor
term |
| <NUM, 115))>
factor
|

<NUM’ Illll>

(1+5)*6

factor

<NUM’ 116H>

Creating an AST from predictive grammar

Expr
Expr2

::= NUM Expr?2
::= MINUS NUM Expr2

5 -4 -3

Expr

5/\

Expr2
- 4 Expr2
/ ,\
- 3

Expr2

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr?2
| un
AST<->
AST<-> AST<3>
AST<5> AST<4>

5 -4 -3

Expr

T

5 Expr2
- 4 Expr2
////
- 3

Expr2

How do we get to the desired parse tree?

Creating an AST from predictive grammar

5 -4 -3
Expr = NUM Expr?2
Expr2 ::= MINUS NUM Expr?2
| un EXpr
5 Expr2

we can inject code at any point during the parse.

Keep in mind that because we wrote our own parser, / ‘\
- 4

Expr2

P

B 3 Expr2

Creating an AST from predictive grammar

Expr
Expr2

::= NUM Expr?2
::= MINUS NUM Expr2

AST<5>

5 -4 -3
Expr
5 Expr2

— I

|

4 Expr2
/ ,\
- 3

Expr2

Get number node
after we see a
number

Creating an AST from predictive grammar

Expr
Expr2

::= NUM Expr?2
::= MINUS NUM Expr2

AST<5>

5 -4 -3
Expr
5 Expr2

— I

|

4 Expr2
/ ,\
- 3

Expr2

Pass the node
down

Creating an AST from predictive grammar

Expr
Expr2

::= NUM Expr?2
::= MINUS NUM Expr2

AST<5>

5 -4 -3
Expr
///\\\\\\\\\\\\\ AST<5>
5 Expr2
Pass the node N 4
down Expr2
/ ,\
B 3 Expr2

Creating an AST from predictive grammar

Expr

Expr2 ::

“n

NUM Expr2
MINUS NUM Expr2

AST<->

T T

AST<5>

AST<4>

5 -4 -3

Expr

5///\\\\\\\\\\\\\ AST<5>

Expr2
, - 4 Expr2
In Expr2, after 4 is

parsed, create a /
- 3

number node and
a minus node

Expr2

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr?2
AST<->

T T

AST<5> AST<4>

5 -4 -3
Expr
5 Expr2

//////////l\\\\\\\\ AST<->
pass the new node - EXpr2

down ////’\\\\\
- 3

Expr2

Creating an AST from predictive grammar

5 -4 -3

Expr = NUM Expr?2
Expr2 ::= MINUS NUM Expr?2

| un EXpr

5 Expr2
/ ‘\ AST<_>
AST<-> - 4 Expr2
AST<-> AST<3>
/\ In Expr2, after 3 is
parsed, create a
AST<5> AST<4>

number node and
a minus node

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr?2
| "
AST<->
AST<-> AST<3>
AST<5> AST<4>

5 -4 -3
Expr
T
5 Expr2
- 4 Expr2
///// F\\\\\\~ AST<->
B 3 Expr2

pass down the new
node

Creating an AST from predictive grammar

5 -4 - 3

Expr = NUM Expr?2
Expr2 ::= MINUS NUM Expr2 AST<->

| un EXpr

5 Expr2
AST<-> - 4 Expr2
AST<-> AST<3>

/\ return the node
AST<5> AST<4> when there is

nothing left to
parse

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2 def parse_expr(self):
| un #lexemes second field is the value

= self.next_word[1]
= ASTNumNode (value)
self.eat("NUM")
return self.parse_expr2(node)

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2 def parse_expr(self):
| un #lexemes second field is the value

value = self.next _word[1]
node = ASTNumNode(value)
self.eat("NUM")

return self.parse_expr2(node)

def parse_expr2(self, 1lhs_node):

... for applying the first production rule
self.eat ("MINUS")

value = self.next_word[1]

rhs node = ASTNumNode (value)

self.eat("NUM")

node = ASTMinusNode(1lhs_node, rhs_node)
return self.parse_expr2(node)

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2 def parse_expr(self):
| un #lexemes second field is the value

value = self.next _word[1]
node = ASTNumNode(value)
self.eat("NUM")

return self.parse_expr2(node)

def parse_expr2(self, lhs_node):

... for applying the second production rule
return lhs_node

Creating an AST from predictive grammar

Expr ::= Term Expr2
Expr2 ::= MINUS Term Expr2 def parse_expr(self):
| o #lexemes second field is the value

value = self.next _word[1]
In a more realistic grammar, you might node = ASTNumNode(value)
have more layers: e.g. a Term self.eat("NUM")

return self.parse_expr2(node)
how to adapt?

def parse_expr2(self, 1lhs_node):

... for applying the first production rule
self.eat ("MINUS")

value = self.next_word[1]

rhs node = ASTNumNode (value)

self.eat("NUM")

node = ASTMinusNode(1lhs_node, rhs_node)
return self.expr2(node)

Creating an AST from predictive grammar

Expr ::= Term Expr2
Expr2 ::= MINUS Term Expr2 def parse_expr(self):
| = self.parse_term()

return self.parse_expr2(node)
In a more realistic grammar, you might
have more layers: e.g. a Term

how to adapt?

def parse_expr2(self, lhs_node):

... for applying the first production rule The parse_term

self.eat("MINUS") will figure out how

rhs_node = self.parse_term() :o geht you an AST node
= ASTMinusNode(lhs_node, rhs_node) or that term.

return self.parse_expr2(node)

Example

* Python AST

import ast

print(ast.dump(ast.parse('5-4-2")))

Example

* Python AST

import ast

print(ast.dump(ast.parse('5-4-2")))

Expr(value=BinOp(left=BinOp(left=Num(n=5), op=Sub(), right=Num(n=4)), op=Sub(), right=Num(n=2)))

Evaluate an AST by doing a post order traversal

Expr
Expr2

NUM Expr2
MINUS NUM Expr2

AST<-> AST

T

AST<-> AST<3>

T T

AST<5> AST<4>

5 -4 -3
Expr
/// \\\\\\\\\\\\\\ parse tree
5 Expr2
- 4 Expr2
////
B 3 Expr2

Parse trees cannot always be evaluated
in post-order. An AST should always be

Evaluate an AST by doing a post order traversal

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr?2

What if you cannot evaluate it?
What else might you do?

X - Yy - 2
AST<->

T

AST<-> AST<z>

T T

AST<x> AST<y>

Evaluate an AST by doing a post order traversal

Expr NUM Expr2
Expr2 ::= MINUS NUM Expr?2

| un

What if you cannot evaluate it?
What else might you do?

int x;
AST<-> int y;
float z;
float w;
AST<-> AST<z> w=x-Y -2

T T

AST<x> AST<y> How does this change things?

Evaluate an AST by doing a post order traversal

Expr NUM Expr2
Expr2 ::= MINUS NUM Expr?2

| un

needs to be an x86
addss instruction

needs to be an x86 AST<->

add instruction /\

AST<-> AST<z>

T T

AST<x> AST<y>

Is this all?

What if you cannot evaluate it?
What else might you do?

int x;

int y;

float z;
float w;
W=X-Y - Z

How does this change things?

Evaluate an AST by doing a post order traversal

int x;
EXpr = NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| o float w;
W=X-Y - 2

needs to be an x86

addss instruction Lets do some experiments.

needs to be an x86 AST<->

What should 5 + 5.0 be?
add instruction /\

AST<-> AST<z>

T T

AST<x> AST<y>

Is this all?

Evaluate an AST by doing a post order traversal

int x;
EXpr = NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| o float w;
W=X-Y - 2

needs to be an x86

addss instruction Lets do some experiments.

needs to be an x86 AST<->

What should 5 + 5.0 be?
add instruction /\
but

AST<-> AST<z>

/////////\\\\\\\\ addss rl r2

AST<x> AST<y> . :
interprets both registers

fl
Is this all? as tloats

Evaluate an AST by doing a post order traversal

int x;
EXpr = NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| o float w;
W=X-Y - 2

needs to be an x86
addss instruction

needs to be an x86 AST<->

But the binary of 5 is 0b101
add instruction /\ the float value of 0b101 is 7.00649232162e-45

AST<-> AST<z>

T T

AST<x> AST<y>

We cannot just add them!

Is this all?

Evaluate an AST by doing a post order traversal

int x;
EXpr = NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| o float w;
W=X-Y - 2

needs to be an x86
addss instruction

needs to be an x86 AST<->

add instruction /\

AST<int_to_float> AST<z>

/

AST<->

/\ We need to make sure our operands are in the right format!

AST<x> AST<y>

Type systems

* Given a language a type system defines:
* The primitive (base) types in the language
* How the types can be converted to other types
e implicitly or explicitly
* How the user can define new types

Type checking

* Check a program to ensure that it adheres to the type system

Especially interesting for compilers as a program given in the type system for the input
language must be translated to a type system for lower-level program

Type systems

e Different types of Type Systems for languages:
* statically typed: types can be determined at compile time
* dynamically typed: types are determined at runtime
* untyped: the language has no types

 What are examples of each?
* What are pros and cons of each?

Type systems

* Different types of Type Systems for languages:

* statically typed: types can be determined at compile time
* dynamically typed: types are determined at runtime
* untyped: the language has no types

 What are examples of each?
* What are pros and cons of each?

* |n this class, we will be:
* Compiling a statically typed language (similar to C)
* into an untyped language (similar to an ISA)
 using a dynamically typed language (python)

Type systems

Considerations:

e Base types in the language:
* ints
e chars
* strings

floats

* bool

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

* Base types:
* ints
e chars
* strings
floats
* bool

size of ints?

How does C do it?

How does Python do it?
Pros and cons?

* How to combine types in expressions:

* int and float?
* int and char?
* int and bool?

Type systems

Considerations:
Are strings a base type? In C? In Python?

* Base types:
* ints
e chars
* strings
floats
* bool

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

* Base types:
* ints
e chars
* strings

floats
e bool How are bools handled? in C? in Python

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

* Base types:
* ints
e chars
* strings
floats
* bool

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

* Base types:
* ints
e chars
* strings
floats
* bool

* How to combine types in expressions:
 int and float?

* intand char? What do each of these do if they are +’ed together?
* int and bool?

Type checking on an AST

int x;
int y;
float z;
float w;

W=ZX-Y - 2 each node additionally gets a type

AST<->

T

AST<-> AST<z>

T T

AST<x> AST<y>

Type checking on an AST

int x;
int y;
float z;
float w; "
W=ZX-Y - 2 each node additionally gets a type
we can get this from the symbol table for the leaves
AST<->
AST<-> AST<z, float>

T

AST<x, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

AST<->

T

AST<-,?> AST<z, float>

T T

AST<x, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

combination rules for subtraction:

/////////////»\\\\\\\ int int int

int float float

AST<-,?> AST<z, float>
/////////\\\\\\\\ float int float
float float float

AST<x, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

/////////////»\\\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<x, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

AST<:, 2> first | second | result ___

//////////////\\\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<x, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

///////////////«\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<x, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

///////////////«\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<x, int> AST<y, int>

what else?

Type checking on an AST

int x;

int y;

float z;

float w;

W=X-Y - 2

AST<-,float>
AST<int_to_roT\
AST<-,int>
AST<x, int> AST<y, int>

How do we get the type for this one?

AST<z, float>

inference rules for subtraction:

int int int

int float float
float int float
float float float

what else? need to convert the int to a float

See everyone on Monday

* We will discuss implementing type inference on Monday

