
CSE110A: Compilers
April 27, 2022

Topics:
• Module 3: Intermediate representations
• Intro to intermediate representations
• ASTs

• parse trees into ASTs

..

.. ..

....

...

... ...

...

AST

CFG

store i32 0, ptr %2
%3 = load i32, ptr %1
%4 = add nsw i32 %3, 1,
store i32 %4, ptr %1
%5 = load i32, ptr %2

3 address code

Announcements

• HW 2
• Due on Monday by midnight
• Still have lots of chances for help
• If you haven’t started yet, I highly suggest that you start!

• Midterm will be given on May 2
• Take home midterm.
• Assigned on Monday morning and due on Friday by midnight
• No late midterms are accepted

Announcements

• HW 2
• Due on Monday by midnight
• Still have lots of chances for help
• If you haven’t started yet, I highly suggest that you start!

• Midterm will be given on May 2
• Take home midterm.
• Assigned on Monday morning and due on Friday by midnight
• No late midterms are accepted

• HW 1 grades
• Hoping to get them by Monday

Announcements

• Neal wrote a recursive descent primer on Piazza, check it out!

Homework 2 clarifications

• Tip for starting on statement rules

Simply translate the English:

Simply translate the English:

Statement ::= variable_declaration
| assignment_statement
| if_else_statement

Simply translate the English:

Statement ::= variable_declaration
| assignment_statement
| if_else_statement

variable_declaration ::= TYPE ID SEMI

Simply translate the English:

Statement ::= variable_declaration
| assignment_statement
| if_else_statement

variable_declaration ::= TYPE ID SEMI

Simply translate the English:

Statement ::= variable_declaration
| assignment_statement
| if_else_statement

variable_declaration ::= type ID SEMI

type ::= FLOAT
| INT

Homework 2 clarifications

• Statement precedence

• Do we need to encode statement precedence? Or associativity?

Homework 2 clarifications

Statement_list ::= Statement Statement_list
| Statement

Statement_list ::= Statement_list Statement
| Statement

Which one do we want?

Homework 2 clarifications

Statement_list ::= Statement Statement_list
| Statement

Statement_list ::= Statement_list Statement
| Statement

We don’t want left recursion for top-down
parsing

We might want left recursion for left
associativity

int x; x = 42; x = 52;

think about this program. We want to evaluate it left to right.

Homework 2 clarifications
Statement_list ::= Statement Statement_list

| Statement

int x; x = 42; x = 52;
Statement_list

int x; Statement_list

x = 42;
Statement_list

x = 52;

Homework 2 clarifications
Statement_list ::= Statement Statement_list

| Statement

int x; x = 42; x = 52;
Statement_list

int x; Statement_list

x = 42;
Statement_list

x = 52;

there is no evaluation
associated with a
statement list. The evaluation
should occur at the statement

Thus we can use the right recursive
form with no issue. We also don’t
have to worry about statement
precedence

Homework 2 clarifications

• Left associativity and left recursion expressions

Expr ::= Expr MINUS NUM
| NUM

Simple grammar for minus expressions

Expr

3Expr

45

Left recursive grammar
makes this parse tree. It encodes
associativity

5 - 4 - 3

-

-

Expr ::= Expr MINUS NUM
| NUM

Simple grammar for minus expressions

5 - 4 - 3

Left recursive grammar
makes this parse tree. It encodes
associativity.

But left recursion won’t work
for top-down parsers!

Expr ::= NUM MINUS Expr
| NUM

What if we do it right recursive 5 - 4 - 3

Expr

3

Expr

4

5

We can use this grammar in a top-down
parser, but it doesn’t encode associativity

Expr

3Expr

45

-

-

-

-

Expr ::= Expr MINUS NUM
| NUM

Simple grammar for minus expressions

5 - 4 - 3

Expr Left recursive grammar
makes this parse tree. It encodes
associativity.

But left recursion won’t work
for top-down parsers!

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

What if we follow the recipe

3Expr

45

-

-

Expr ::= Expr MINUS NUM
| NUM

Simple grammar for minus expressions

5 - 4 - 3

Expr Left recursive grammar
makes this parse tree. It encodes
associativity.

But left recursion won’t work
for top-down parsers!

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

What if we follow the recipe

5

Expr

Expr2

- Expr24

- 3 Expr2

How about this one?

3Expr

45

-

-

Expr ::= Expr MINUS NUM
| NUM

Simple grammar for minus expressions

5 - 4 - 3

5

Left recursive grammar
makes this parse tree. It encodes
associativity.

But left recursion won’t work
for top-down parsers!

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

What if we follow the recipe
Expr

Expr2

- Expr24

- 3 Expr2

How about this one?

It isn’t really clear...

We will talk about it more today
but for your homework, encode
associativity in your original grammar
(1.1) and use the recipe for eliminating
left recursion for the rest.

Expr

3Expr

45

-

-

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int foo() {
if (1)
int x;

else
int y;

return 0;
}

Is this allowed in C-simple?

Is it allowed in C?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int foo() {
if (1)
int x;

else
int y;

return 0;
}

Is this allowed in C-simple? Yes!

Is it allowed in C? No!

I have failed L C-
simple is not a strict
subset of C

We won’t test
this case.

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int foo() {
int i;
for (i = 0; i < 100; i = i + 1)
int y;

return 0;
}

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int foo() {
int i;
for (i = 0; i < 100; i = i + 1)
int y;

return 0;
}

Is this allowed in C-simple? Yes!

Is it allowed in C? No!

We won’t test this
case either.

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int foo() {

for (int i = 0; i < 100; i = i + 1)
i = i + 1;

return 0;
}

How about this one?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int foo() {

for (int i = 0; i < 100; i = i + 1)
i = i + 1;

return 0;
}

Is this allowed in C-simple? No!

Is it allowed in C? Yes!

starts a new scope in C. But
you don’t have to worry
about it in C-simple

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int x;
{
int y;
x++;
y++;

}
y++;

Homework 2 clarifications

• Scopes for symbol table

• In which cases do you need to start a new scope?

int x;
{
int y;
x++;
y++;

}
y++;

block statement
needs a new scope

Quiz

Quiz

Quiz

int x;
{
int y;
x++;
y++;

}
y++;

Quiz

Quiz

if (1):
x = 5

print(x)

int main() {
if (1) {

int x = 5;
}
printf("%d\n",x);

}
is this allowed?

is this allowed?

Quiz

if (1):
x = 5

print(x)

int main() {
if (1) {

int x = 5;
}
printf("%d\n",x);

}
is this allowed? yes

is this allowed? no

Quiz

Quiz

Expr ::= Expr MINUS NUM
| NUM

Simple grammar for minus expressions
Expr

3Expr

45

5 - 4 - 3

-

-

Quiz

Expr ::= Expr MINUS NUM {return $1 - $3}
| NUM {return $1}

Simple grammar for minus expressions
Expr

3Expr

45

5 - 4 - 3

-

-

Quiz

Expr ::= Expr MINUS NUM {return $1 - $3}
| NUM {return $1}

Simple grammar for minus expressions
Expr

3Expr

45

5 - 4 - 3

-

-
returns 5 returns 4

Quiz

Expr ::= Expr MINUS NUM {return $1 - $3}
| NUM {return $1}

Simple grammar for minus expressions
Expr

3Expr

45

5 - 4 - 3

-

-
returns 5 returns 4

returns 1

Quiz

Expr ::= Expr MINUS NUM {return $1 - $3}
| NUM {return $1}

Simple grammar for minus expressions
Expr

3Expr

45

5 - 4 - 3

-

-
returns 5 returns 4

returns 1

returns 3

Quiz

Expr ::= Expr MINUS NUM {return $1 - $3}
| NUM {return $1}

Simple grammar for minus expressions
Expr

3Expr

45

5 - 4 - 3

-

-
returns 5 returns 4

returns 1

returns 3

returns -2

Quiz

So why can’t we always evaluate arithmetic expressions during parsing?

Quiz

So why can’t we always evaluate arithmetic expressions during parsing?

Expr ::= Expr MINUS UNIT {return $1 - $3}
| UNIT {return $1}

UNIT ::= NUM {return $1}
| ID {return $1}

x - y - z Expr

zExpr

yx

-

-

Quiz

We cannot evaluate the program unless we know the value of x,y,z. What are some examples when we
wouldn’t know the values?

Expr ::= Expr MINUS UNIT {return $1 - $3}
| UNIT {return $1}

UNIT ::= NUM {return $1}
| ID {return $1}

x - y - z Expr

zExpr

yx

-

-

Quiz

But we might be able to do some optimizations...

Expr ::= Expr MINUS UNIT {return $1 - $3}
| UNIT {return $1}

UNIT ::= NUM {return $1}
| ID {return $1}

x - y - z Expr

zExpr

yx

-

-

Quiz

But we might be able to do some optimizations...

Expr ::= Expr MINUS UNIT {return $1 - $3}
| UNIT {return $1}

UNIT ::= NUM {return $1}
| ID {return $1}

x - x - z Expr

zExpr

xx

-

-

Quiz

But we might be able to do some optimizations...

Expr ::= Expr MINUS UNIT {if $1 == $3 then 0 else ...}
| UNIT {return $1}

UNIT ::= NUM {return $1}
| ID {return $1}

x - x - z Expr

z0 -

Quiz

Thanks for your feedback! Apologies again about the disorganization caused by the technical failure!

Review

• We covered most of last lecture’s material in the quiz

New module!

• Intermediate representations

• Where are we at in our compiler flow?

Optimizations
Optimizations

Optimizations

Compiler Architecture

Front end
input

program
machine

code

Medium detailed view

Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

creates
structure

string

produces
executable code

https://stackoverflow.com/questions/15548023/clang-optimization-levels

More detailed view

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

More detailed view

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

IR Analysis/
Optimization

target code
gen

target code
gen

loop!

loop!

More detailed view

We’re going to move semantic analysis
into IR optimizations and analysis

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
optimizations

loop!

loop!

More detailed view

string token stream syntax tree

IR programs

optimized IR
program

ISA program

optimized ISA program

IR Analysis/
Optimization

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
gen

loop!

loop!

More detailed view

string token stream syntax tree

IR programs

optimized IR
program

ISA program

optimized ISA program

position = initial + rate * 60;

IR Analysis/
Optimization

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree

IR programs

optimized IR
program

optimized ISA program

position = initial + rate * 60;

<id,> <assign,=> <id,> <bin_op,+> <id,> <bin_op,*> <num,60> <semi,;>

Token stream

IR Analysis/
Optimization

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree

IR programs

optimized IR
program

Token stream

assign

<id,1>

<id,2>

<id,3> 60

expr

term

Syntax tree

position = initial + rate * 60;

IR Analysis/
Optimization

<id,> <assign,=> <id,> <bin_op,+> <id,> <bin_op,*> <num,60> <semi,;>

=

+

*

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree

IR programs

optimized IR
program

assign

<id,1>

<id,2>

<id,3> 60

expr

term

Syntax tree

position = initial + rate * 60;

IR Analysis/
Optimization

=

+

*=

<id,1>

<id,2>

<id,3>

+

*

60

AST

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree

IR programs

optimized IR
program

=

<id,1>

<id,2>

<id,3>

60

+

*

AST

position = initial + rate * 60;

int_to_float

IR Analysis/
Optimization

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

token stream syntax tree syntax tree

IR programs

optimized IR
program

=

<id,1>

<id,2>

<id,3>

60

+

*

AST

position = initial + rate * 60;

int_to_float

%r0 = int_to_float(60);
%r1 = %r0 * id3;
%r2 = %r1 + id2;
%id1 = %r2;

3-address code program

Intermediate representations

• Several forms:
• tree - abstract syntax tree
• graphs - control flow graph
• linear program - 3 address code

• Often times the program is represented as a hybrid
• graphs where nodes are a linear program
• linear program where expressions are ASTs

• Progression:
• start close to a parse tree
• move closer to an ISA

Intermediate representations

• Several forms:
• tree - abstract syntax tree
• graphs - control flow graph
• linear program - 3 address code

• Different optimizations and analysis are more suitable for IRs in
different forms.

Example: loop unrolling

for_statement

assignment comparison update statement

for (i = 0; i < 100; i = i +1) {
x = x + 1;

}

Example: loop unrolling

for_statement

assignment comparison update statement

for (i = 0; i < 100; i = i + 1) {
x = x + 1;

}

Check:

1. Find iteration variable by
examining assignment, comparison
and update.

2. found i

3. check that statement doesn’t change i.

4. check that comparison goes around an
even number of times.

Example: loop unrolling

for_statement

assignment comparison update statement
update
statement

for (i = 0; i < 100; i = i + 1) {
x = x + 1;

}

Check:

1. Find iteration variable by
examining assignment, comparison
and update.

2. found i

3. check that statement doesn’t change i.

4. check that comparison goes around an
even number of times.

Perform optimization

copy statement and put an update before
it

Example: loop unrolling

for_statement

assignment comparison update statement
update
statement

for (i = 0; i < 100; i = i + 1) {
x = x + 1;
i = i + 1;
x = x + 1;

}

Check:

1. Find iteration variable by
examining assignment, comparison
and update.

2. found i

3. check that statement doesn’t change i.

4. check that comparison goes around an
even number of times.

Perform optimization

copy statement and put an update before
it

Example: loop unrolling Check:

1. Find iteration variable by
examining assignment, comparison
and update.

2. found i

3. check that statement doesn’t change i.

4. check that comparison goes around an
even number of times.

Perform optimization

copy statement and put an update before
it

br label %3, !dbg !22

3: ; preds = %13, %0
%4 = load i32, ptr %1, align 4, !dbg !23
%5 = icmp slt i32 %4, 100, !dbg !25
br i1 %5, label %6, label %16, !dbg !26

6: ; preds = %3
%7 = load i32, ptr %2, align 4, !dbg !27
%8 = add nsw i32 %7, 1, !dbg !29
store i32 %8, ptr %2, align 4, !dbg !30
%9 = load i32, ptr %1, align 4, !dbg !31
%10 = add nsw i32 %9, 1, !dbg !32
store i32 %10, ptr %1, align 4, !dbg !33
%11 = load i32, ptr %2, align 4, !dbg !34
%12 = add nsw i32 %11, 1, !dbg !35
store i32 %12, ptr %2, align 4, !dbg !36
br label %13, !dbg !37

13: ; preds = %6
%14 = load i32, ptr %1, align 4, !dbg !38
%15 = add nsw i32 %14, 1, !dbg !39
store i32 %15, ptr %1, align 4, !dbg !40
br label %3, !dbg !41, !llvm.loop !42

LLVM IR for the
for loop. Much
harder to analyze!

Example: common subexpression elimination

z = x + y;
a = b + c;
d = x + y;

Can this be optimized?

Example: common subexpression elimination

z = x + y;
a = b + c;
d = x + y;

Can this be optimized?

z = x + y;
a = b + c;
d = z;

remove redundant addition

Easy to do this optimization when code is a low level form like this

Our first IR: abstract syntax tree

• One step away from parse trees

• Great representation for expressions

• Natural representation to apply type checking

What is an AST?
input: 1+5*6

Operator Name Productions

+ expr : expr PLUS term
| term

* term : term TIMES factor
| factor

() factor : LPAREN expr RPAREN
| NUM

We’ll start by looking at a parse tree: expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

term

<NUM, “5”>

factor <NUM, “6”>

factor

What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

input: 1+5*6

term

<NUM, “5”>

factor <NUM, “6”>

factor

Operator Name Productions

+ expr : expr PLUS term
| term

* term : term TIMES factor
| factor

() factor : LPAREN expr RPAREN
| NUM

We’ll start by looking at a parse tree:

What are leaves?

What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

input: 1+5*6

term

<NUM, “5”>

factor <NUM, “6”>

factor

Operator Name Productions

+ expr : expr PLUS term
| term

* term : term TIMES factor
| factor

() factor : LPAREN expr RPAREN
| NUM

We’ll start by looking at a parse tree:

What are leaves? lexemes

What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

input: 1+5*6

term

<NUM, “5”>

factor <NUM, “6”>

factor

Operator Name Productions

+ expr : expr PLUS term
| term

* term : term TIMES factor
| factor

() factor : LPAREN expr RPAREN
| NUM

We’ll start by looking at a parse tree:

What are nodes?

What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

input: 1+5*6

term

<NUM, “5”>

factor <NUM, “6”>

factor

Operator Name Productions

+ expr : expr PLUS term
| term

* term : term TIMES factor
| factor

() factor : LPAREN expr RPAREN
| NUM

We’ll start by looking at a parse tree:

What are nodes? non-terminals

What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

input: 1+5*6

term

<NUM, “5”>

factor <NUM, “6”>

factor

Parse trees are defined by the grammar
• Tokens
• Production rules

Parse trees are often not explicitly
constructed. We use them to visualize the
parsing computation

What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

input: 1+5*6

term

<NUM, “5”>

factor <NUM, “6”>

factor

+

1

5

*

6

AST

What are some differences?

What is an AST?

expr

expr <PLUS,”+”>

<NUM, “1”>

<TIMES, “*”>termterm

factor

input: 1+5*6

term

<NUM, “5”>

factor <NUM, “6”>

factor

+

1

5

*

6

AST

What are some differences?
• disjoint from the grammar
• leaves are data, not lexemes
• nodes are operators, not non-terminals

Example expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

what happens to ()s in an AST?

Operator Name Productions

+ expr : expr PLUS term
| term

* term : term TIMES factor
| factor

() factor : LPAR expr RPAR
| NUM

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

Example expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

what happens to ()s in an AST?

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

*

+

1 5

6

No need for (), they simply encode
precedence. And now we have precedence
in the AST tree structure

formalizing an AST

• A tree based data structure, used to represent expressions

• Main building block: Node
• Leaf node: ID or Number
• Node with one child: Unary operator (-) or type conversion (int_to_float)
• Node with two children: Binary operator (+,*)

formalizing an AST

• A tree based data structure, used to represent expressions

• Main building block: Node
• Leaf node: ID or Number
• Node with one child: Unary operator (-) or type conversion (int_to_float)
• Node with two children: Binary operator (+,*)

class ASTNode():
def __init__(self):

pass

class ASTLeafNode(ASTNode):
def __init__(self, value):

self.value = value

class ASTNumNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)

class ASTIDNode(ASTLeafNode):
def __init__(self, value):

super().__init__(value)

class ASTBinOpNode(ASTNode):
def __init__(self, l_child, r_child):

self.l_child = l_child
self.r_child = r_child

class ASTPlusNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

class ASTMultNode(ASTBinOpNode):
def __init__(self, l_child, r_child):

super().__init__(l_child,r_child)

Creating an AST from production rules

Operator Name Productions Production action

+ expr : expr PLUS term
| term

{}
{}

* term : term TIMES factor
| factor

{}
{}

() factor : LPAR expr RPAR
| NUM
| ID

{}
{}
{}

Creating an AST from production rules

Operator Name Productions Production action

+ expr : expr PLUS term
| term

{return ASTAddNode($1,$3)}
{return $1}

* term : term TIMES factor
| factor

{return ASTMultNode($1,$3)}
{return $1}

() factor : LPAR expr RPAR
| NUM
| ID

{return $2}
{return ASTNumNode($1)}
{return ASTIDNode($1)}

Name Productions Production action

expr : expr PLUS term
| term

{return ASTAddNode($1,$3)}
{return $1}

term : term TIMES factor
| factor

{return ASTMultNode($1,$3)}
{return $1}

factor : LPAR expr RPAR
| NUM
| ID

{return $2}
{return ASTNumNode($1)}
{return ASTIDNode($1)}

expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

Lets build the AST

Name Productions Production action

expr : expr PLUS term
| term

{return ASTAddNode($1,$3)}
{return $1}

term : term TIMES factor
| factor

{return ASTMultNode($1,$3)}
{return $1}

factor : LPAR expr RPAR
| NUM
| ID

{return $2}
{return ASTNumNode($1)}
{return ASTIDNode($1)}

expr

term

<LPAR, “(”>

factor

expr

input: (1+5)*6

<RPAR, “)”>

term<PLUS,”+”>expr

term

factor

<NUM, “1”>

factor

<NUM, “5”>

<TIMES, “*”>

<NUM, “6”>

factorterm

AST<*>

AST<+>

AST<1> AST<5>

AST<6>

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<->

AST<->

AST<5> AST<4>

AST<3>

How do we get to the desired parse tree?

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

Keep in mind that because we wrote our own parser,
we can inject code at any point during the parse.

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

Get number node
after we see a
number

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

Pass the node
down

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

Pass the node
down

AST<5>

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

In Expr2, after 4 is
parsed, create a
number node and
a minus node AST<->

AST<5> AST<4>

AST<5>

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

pass the new node
down

AST<->

AST<5> AST<4>

AST<->

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

AST<->

AST<5> AST<4>

In Expr2, after 3 is
parsed, create a
number node and
a minus node

AST<->

AST<3>

AST<->

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

AST<->

AST<5> AST<4>
pass down the new
node

AST<->

AST<3>

AST<->

Creating an AST from top down grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”

5 - 4 - 3

5

Expr

Expr2

- Expr24

- 3 Expr2

AST<5>

AST<->

AST<5> AST<4>
return the node
when there is
nothing left to
parse

AST<->

AST<3>

AST<->

Creating an AST from top down grammar
Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”
def parse_expr(self):

#lexemes second field is the value
value = self.next_word[1]
node = ASTNumNode(value)
self.eat("NUM")
return self.parse_expr2(node)

Creating an AST from top down grammar
Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”
def parse_expr(self):

#lexemes second field is the value
value = self.next_word[1]
node = ASTNumNode(value)
self.eat("NUM")
return self.parse_expr2(node)

def parse_expr2(self, lhs_node):
... for applying the first production rule
self.eat("MINUS")
value = self.next_word[1]
rhs_node = ASTNumNode(value)
self.eat("NUM")
node = ASTMinusNode(lhs_node, rhs_node)
return self.parse_expr2(node)

Creating an AST from top down grammar
Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2

| “”
def parse_expr(self):

#lexemes second field is the value
value = self.next_word[1]
node = ASTNumNode(value)
self.eat("NUM")
return self.parse_expr2(node)

def parse_expr2(self, lhs_node):
... for applying the second production rule
return lhs_node

Creating an AST from top down grammar
Expr ::= Term Expr2
Expr2 ::= MINUS Term Expr2

| “”
def parse_expr(self):

#lexemes second field is the value
value = self.next_word[1]
node = ASTNumNode(value)
self.eat("NUM")
return self.parse_expr2(node)

def parse_expr2(self, lhs_node):
... for applying the first production rule
self.eat("MINUS")
value = self.next_word[1]
rhs_node = ASTNumNode(value)
self.eat("NUM")
node = ASTMinusNode(lhs_node, rhs_node)
return self.expr2(node)

In a more realistic grammar, you might
have more layers: e.g. a Term

how to adapt?

Creating an AST from top down grammar
Expr ::= Term Expr2
Expr2 ::= MINUS Term Expr2

| “”
def parse_expr(self):

node = self.parse_term()
return self.parse_expr2(node)

def parse_expr2(self, lhs_node):
... for applying the first production rule
self.eat("MINUS")
rhs_node = self.parse_term()
node = ASTMinusNode(lhs_node, rhs_node)
return self.parse_expr2(node)

In a more realistic grammar, you might
have more layers: e.g. a Term

how to adapt?

The parse_term
will figure out how
to get you an AST node
for that term.

See everyone on Friday

• We will discuss type checking on ASTs

