
CSE110A: Compilers
April 22, 2022

Topics:
• Symbol Tables in parsing

• Parsing actions

• Parser generators

..

.. ..

....

int main() {
printf(““);
return 0;
}

Announcements

• HW 2 is out!
• due on May 2 at midnight
• You had everything for part 1 and 2 after wednesday
• You will have everything you need for part 3 after today
• Plenty of chances for help. Get started early

• Midterm will be given on May 2
• Take home midterm.
• Assigned on Monday and due on Friday
• No late midterms are accepted

• No class on Monday (use the time to work on homework)

Announcements

• Expect HW 1 grades around May 2
• You have 2 weeks to do the homework and we get 2 weeks to grade it

Announcements

• HW 2 clarifications:
• No skeleton for part 1 - it is done completely in your report
• Please read the piazza for questions about the grammar and other hints

An assignment statement is followed by a semi colon. The language is a subset of C. Anything that C-simple
accepts should also be accepted by C (with the same meaning).

Announcements

• Some more homework examples:
• Variable declarations vs. assignment statements
• for statements
• block statements

Quiz

Quiz

{}

{}

{}

{}

{}

First sets

Quiz

{d,c}

{d}

{d,c}

{c}

{d,c}

First sets

no! in both B and C we do not have disjoint first sets

Quiz

Quiz

{}

{}

{}

{}

{}

First sets

{}

Quiz

{c,d}

{d}

{c,d}

{c}

{d}

First sets

{d}

No, because for production B the first sets are not disjoint

Quiz

Let’s look at the grammar
How do we parse an Expr?1: Expr ::= Unit Expr2

2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Let’s look at the grammar

We can just write exactly that!

How do we parse an Expr?
We parse a Unit followed by an Expr2

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

def parse_Expr(self):
self.parse_Unit();
self.parse_Expr2();
return

Let’s look at the grammar
How do we parse an Expr2? 1: Expr ::= Unit Expr2

2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Expr2?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Expr2?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Expr2(self):

token_id = get_token_id(self.to_match)

Expr2 ::= Op Unit Expr2
if token_id in ["PLUS", "MULT"]:

self.parse_Op()
self.parse_Unit()
self.parse_Expr2()
return

Expr2 ::= ""
if token_id in [None, ”RPAR"]:

return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["PLUS", "MULT", ”RPAR"]) # expected token

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse a Unit?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse a Unit?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Unit(self):

token_id = get_token_id(self.to_match)

Unit ::= ‘(‘ Expr ‘)’
if token_id == "LPAR":

self.eat("LPAR")
self.parse_Expr()
self.eat("RPAR")
return

Unit :: = ID
if token_id == "ID":

self.eat("ID")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["LPAR", "ID"]) # expected token

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse a Unit?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Unit(self):

token_id = get_token_id(self.to_match)

Unit ::= ‘(‘ Expr ‘)’
if token_id == "LPAR":

self.eat("LPAR")
self.parse_Expr()
self.eat("RPAR")
return

Unit :: = ID
if token_id == "ID":

self.eat("ID")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["LPAR", "ID"]) # expected token

ensure that to_match has token ID of “LPAREN”
and get the next token

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Op?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Op?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Op(self):

token_id = get_token_id(self.to_match)

Op ::= '+'
if token_id == "PLUS":

self.eat("PLUS")
return

Op ::= '*'
if token_id == "MULT":

self.eat("MULT")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["MULT", "PLUS"]) # expected token

Quiz

parsing

Quiz

parsing

Quiz

parsing

Quiz

parsing

Likely plays a small role, but typically the number of non-terminals
is much smaller than the input string

Quiz

parsing

Quiz

parsing

Good answer, but potentially the input string is one giant ID. Then
the parser simply needs to match one token.

Quiz

parsing

Quiz

parsing

The parser needs to match every single token once. This
is the correct answer

Quiz

parsing

Quiz

parsing

Backtracking is not required for LL(1) grammar

Review

Do we need backtracking?

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

Do we need backtracking?

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

We cannot select the next
rule based on a single look ahead
token!

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: | ‘(‘ Args ‘)’
4: | “”

We can refactor

First
1: {ID}
2: {‘[‘}
3: {‘(‘}
4: {“”}

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: | ‘(‘ Args ‘)’
4: | “”

We can refactor

First
1: {ID}
2: {‘[‘}
3: {‘(‘}
4: {“”} // We will need to compute the follow set

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: | ‘(‘ Args ‘)’
4: | “”

We can refactor

It is not always possible to
rewrite grammars into a
predictive form, but many
programming languages can be.

First
1: {ID}
2: {‘[‘}
3: {‘(‘}
4: {“”} // We will need to compute the follow set

New material

Scope

• What is scope?

• Can it be determined at compile time? Can it be determined at
runtime?

• C vs. Python

• Anyone have any interesting scoping rules they know of?

Scope

• Lexical scope example

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1; What are the final values in x and y?

Scope

• We can catch certain variable scope errors at parse time
• e.g. if a variable was declared in the current scope or not

Scope

• Lexical scope example

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1;

This program should parse and execute

int x = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1;

What about this one?

Scope

• Lexical scope example

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1;

This program should parse and execute

int x = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1;

What about this one?

undeclared!

How to track scope?

How to track scope?

• Symbol table object

• two methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id (or overwrite an
existing id) into the symbol table along with a set
of information about the id.

What information might we store about an id?

a very simple programming language

int x;
x++;
int y;
y++;

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LBRAC = “{“
RBRAC = “}”
SEMI = “;”

statements are either a declaration or an increment

a very simple programming language

int x;
{
int y;
x++;
y++;

}
y++;

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LBRAC = “{“
RBRAC = “}”
SEMI = “;”

statements are either a declaration or an increment

a very simple programming language

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LBRAC = “{“
RBRAC = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
int y;
x++;
y++;

}
y++;

error!

How to track scope?

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{}

Say we are matched the statement:
int x;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{

self.eat(TYPE)
variable_name = self.to_match[1] # lexeme value
self.eat(ID)
ST.insert(variable_name,None)
self.eat(SEMI)

}

Say we are matched the statement:
int x;

How to track scope?

• SymbolTable ST;

inc_statement ::= ID INCREMENT SEMI
{}

Say we are matched string:
x++;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

inc_statement ::= ID INCREMENT SEMI
{

variable_name = self.to_match[1] # lexeme value
if ST.lookup(variable_name) is None:

raise SymbolTableException(variable_name)
self.eat(ID)
self.eat(INCREMENT)
self.eat(SEMI)

}

Say we are matched string:
x++;

How to track scope?

• SymbolTable ST;

statement : LBRAC statement_list RBRAC

int x;
{
int y;
x++;
y++;

}
y++;

How to track scope?

• SymbolTable ST;

statement : LBRAC statement_list RBRAC

start a new scope S remove the scope S

int x;
{
int y;
x++;
y++;

}
y++;

How to track scope?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to track scope?

• SymbolTable ST;

statement : LBRAC statement_list RBRAC

You will be adding the functions to push and pop scopes in your homework

How to implement a symbol table?

• Thoughts? What data structures are good at mapping strings?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to implement a symbol table?

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

HT 0base scope

How to implement a symbol table?

HT 0push_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

push_scope()

adds a new
Hash Table
to the top of the stack

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

insert (id -> data) at
top hash table

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

check here
first

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id) then check
here

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

pop_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

• Example

HT 0

int x = 0;
{
int y = 0;
y++;
x++;

}
x++;
y++;

Stack of hash tables

Parser actions

Parser actions

• Like token actions: perform an action each time a production option
is matched. Useful for: tracking state

Parser actions

• Like token actions: perform an action each time a production option
is matched.

• Typically performed after the entire production action is matched

• Useful for:
• tracking state

Example

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{

self.eat(TYPE)
variable_name = self.to_match[1] # lexeme value
self.eat(ID)
ST.insert(variable_name,None)
self.eat(SEMI)

}

Say we are matched the statement:
int x;

If we wrote our own recursive descent parser we can implement our own actions inlined

Example

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{
ST.insert($2, None);

}

Say we are matched the statement:
int x;

$1 $2 $3
result of each symbol.
For a terminal it will be
the value

always some way to refer to symbol value, e.g. an array

Parser actions would be written like this

What values get returned from non-
terminals?

What does this print?1: Expr ::= Expr ‘+’ Unit {print $1}
2: | Expr ‘-’ Unit
3: | Unit
4: Unit ::= ‘(‘ Expr ‘)’
5: | NUM

What values get returned from non-
terminals?

Each production rule
needs to return something

1: Expr ::= Expr ‘+’ Unit {print $1; return “expr”}
2: | Expr ‘-’ Unit {return “expr”}
3: | Unit {...}
4: Unit ::= ‘(‘ Expr ‘)’
5: | NUM

What values get returned from non-
terminals?

1: Expr ::= Expr ‘+’ Unit {}
2: | Expr ‘-’ Unit {}
3: | Unit {}
4: Unit ::= ‘(‘ Expr ‘)’ {}
5: | NUM {}

building a calculator

What values get returned from non-
terminals?

1: Expr ::= Expr ‘+’ Unit {return $1 + $3}
2: | Expr ‘-’ Unit {return $1 - $3}
3: | Unit {return $1}
4: Unit ::= ‘(‘ Expr ‘)’ {return $2}
5: | NUM {return $1}

building a calculator

Shortcomings of parser actions

Difficult to perform actions in the middle of a
production

• SymbolTable ST;

statement : LBRAC statement_list RBRAC

start a new scope S remove the scope S

int x;
{
int y;
x++;
y++;

}
y++;

Parser generators

• You provide the CFG, along with some hints, you get a parser back

• They typically use bottom-up parsers
• Algorithm is more complicated
• Able to handle more types of grammars naturally
• Able to naturally encode precedence and associativity

• Examples of tools:
• Yacc, Antrl, PLY

calculator example

These slides follow the calculator example from the PLY documentation

calculator example
import ply.lex as lex

tokens = ["NUM", "MULT", "PLUS", "MINUS", "DIV", "LPAR", "RPAR"]

t_NUM = '[0-9]+'
t_MULT = '*'
t_PLUS = '\+'
t_MINUS = '-'
t_DIV = '/'
t_LPAR = '\('
t_RPAR = ‘\)'

t_ignore = ' '

Error handling rule
def t_error(t):

print("Illegal character '%s'" % t.value[0])
exit(1)

lexer = lex.lex()

Set up the lexer

calculator example
• Import the library

import ply.yacc as yacc

• Simple rule

def p_expr_num(p):
"expr : NUM"
p[0] = int(p[1])

functions are given prefixed by p_

production rules are the doc string

return values are stored in p[0]
children values are in p[1], p[2], etc.

calculator example
• Try it out

calculator example
• Next rule

def p_expr_plus(p):
"expr : expr PLUS expr"
p[0] = p[1] + p[3]

• Try it again

calculator example

• Set associativity (and precedence)

precedence = (
('left', 'PLUS'),

)

calculator example
• Next rules

def p_expr_minus(p):
"expr : expr MINUS expr"
p[0] = p[1] - p[3]

def p_expr_mult(p):
"expr : expr MULT expr"
p[0] = p[1] * p[3]

def p_expr_div(p):
"expr : expr DIV expr"
p[0] = p[1] / p[3]

precedence = [
('left', 'PLUS', 'MINUS'),
('left', 'MULT', 'DIV'),

]

calculator example
• Last rule for expressions

def p_expr_par(p):
"expr : LPAR expr RPAR"
p[0] = p[2]

calculator example
• An extra we can easily implement

def p_expr_div(p):
"expr : expr DIV expr"
if p[3] == 0:

print("divide by 0 error:")
print("cannot divide: " + str(p[1]) + " by 0")
exit(1)

p[0] = p[1] / p[3]

calculator example
• Combining rules:

def p_expr_plus(p):
"expr : expr PLUS expr"
p[0] = p[1] + p[3]

def p_expr_minus(p):
"expr : expr MINUS expr"
p[0] = p[1] - p[3]

def p_expr_mult(p):
"expr : expr MULT expr"
p[0] = p[1] * p[3]

def p_expr_bin(p):
"""
expr : expr PLUS expr

| expr MINUS expr
| expr MULT expr

"""
if p[2] == '+':

p[0] = p[1] + p[3]
elif p[2] == '-':

p[0] = p[1] - p[3]
elif p[2] == '*':

p[0] = p[1] * p[3]
else:

assert(False)

calculator example

• Other useful options
• Error recovery
• Error reporting (it is better in our top down parsers)

• Question: how would we do a calculator implementation in our C-
simple grammar? It is not left recursive so it is not as natural...

See you on Wednesday!

• Work on HW 2

• Starting the next module: intermediate representations

