CSE110A: Compilers

April 22, 2022

Topics:

- Symbol Tables in parsing

- Parsing actions
- Parser generators

Announcements

- HW 2 is out!
- due on May 2 at midnight
- You had everything for part 1 and 2 after wednesday
- You will have everything you need for part 3 after today
- Plenty of chances for help. Get started early
- Midterm will be given on May 2
- Take home midterm.
- Assigned on Monday and due on Friday
- No late midterms are accepted
- No class on Monday (use the time to work on homework)

Announcements

- Expect HW 1 grades around May 2
- You have 2 weeks to do the homework and we get 2 weeks to grade it

Announcements

- HW 2 clarifications:

- No skeleton for part 1 - it is done completely in your report
- Please read the piazza for questions about the grammar and other hints
- An assignment statement, which is ID followed by $=$ followed by an expression.

An assignment statement is followed by a semi colon. The language is a subset of C. Anything that C-simple accepts should also be accepted by C (with the same meaning).

Announcements

- Some more homework examples:
- Variable declarations vs. assignment statements
- for statements
- block statements

Quiz

Is the following grammar backtrack free?
$\mathrm{A} \rightarrow \mathrm{Ba}$
$\mathrm{B} \rightarrow \mathrm{dab}$
|Cb
$C \rightarrow C B$
|Ac

Quiz

First sets

$\mathrm{A} \rightarrow \mathrm{Ba}$	\{\}
$\mathrm{B} \rightarrow \mathrm{dab}$	\{\}
1 Cb	\{\}
$\mathrm{C} \rightarrow \mathrm{cB}$	\{\}
\| Ac	\{\}

Quiz

First sets

$\mathrm{A} \rightarrow \mathrm{Ba}$	$\{d, c\}$	
$B \rightarrow$	dab	$\{d\}$
$\mid C b$	$\{d, c\}$	
$C \rightarrow$	$=B$	$\{c\}$
	$\mid A C$	$\{d, c\}$

no! in both B and C we do not have disjoint first sets

Quiz

Is the following grammar backtrack free?
$A \rightarrow B a$
$B \rightarrow d a b$
$\mid C b$
$C \rightarrow C B$
\| D
$D \rightarrow d B$

Quiz

First sets

$$
\begin{array}{cc}
A \rightarrow B a & \} \\
B \rightarrow d a b & \} \\
\mid C b & \} \\
C \rightarrow C B & \} \\
\mid D & \} \\
D \rightarrow d B & \}
\end{array}
$$

Quiz

First sets

$$
\begin{array}{cl}
A \rightarrow B a & \{c, d\} \\
B \rightarrow d a b & \{d\} \\
\mid C b & \{c, d\} \\
C \rightarrow C B & \{c\} \\
\mid D & \{d\} \\
D \rightarrow d B & \{d\}
\end{array}
$$

No, because for production B the first sets are not disjoint

Quiz

in a recursive descent parser, you make a function for each or what?production optionCFGnon-terminalterminal

Let's look at the grammar

1: Expr ::= Unit Expr2
2: Expr2 :: = Op Unit Expr2

How do we parse an Expr?

Let's look at the grammar

1: Expr	:: = Unit Expr2
2: Expr2	::= Op Unit Expr2
3 :	\| " "
4: Unit	: : = '(Expr ')'
5 :	ID
6: Op	: : = ' + ${ }^{\prime}$
7 :	'*'

How do we parse an Expr?
We parse a Unit followed by an Expr2

We can just write exactly that!

```
def parse_Expr(self):
    self.parse_Unit();
    self.parse_Expr2();
    return
```


Let's look at the grammar

1: Expr ::= Unit Expr2

How do we parse an Expr2?

Let's look at the grammar

Let's look at the grammar

1: Expr ::= Unit Expr2

How do we parse an Expr2?

```
token_id = get_token_id(self.to_match)
# Expr2 ::= Op Unit Expr2
if token_id in ["PLUS", "MULT"]:
self.parse_0p()
self.parse_Unit()
        self.parse_Expr2()
        return
        # Expr2 ::= ""
if token_id in [None, "RPAR"]:
        return
raise ParserException(-1,
    self.to_match,
    self.to_match,
                                # line number (for you to do)
    # observed token
    # expected token
```

6: $\left\{{ }^{\prime}+{ }^{\prime}\right\}$
$7:\left\{{ }^{\prime \prime \prime}\right\}$
First+ sets:
1: \{'(", ID\}
2: $\left\{{ }^{\prime}+\prime,{ }^{\prime}{ }^{\prime \prime}\right\}$
3: \{None, ' ' ' $\}$
4: \{"(‘\}
5: \{ID\}

Let's look at the grammar

1: Expr : : = Unit Expr2	How do we parse a Unit?
2: Expr2 ::= Op Unit Expr2	
3: \| ""	
4: Unit : := '(' Expr ')'	
5: \| ID	
6: Op : : = '+'	
7: \| ،*'	
First+ sets:	
1: \{'(', ID	
2: \{ '+', '*'\}	
3: \{None, ')'\}	
4: \{، (‘\}	
5: \{ID \}	
6: \{'+'\}	
7: \{،*'\}	

Let's look at the grammar

1: Expr	: : = Unit Expr2
2: Expr2	: : = Op Unit Expr2
3 :	\| " "
4: Unit	: : = '('Expr ')'
5 :	ID
6: Op	: : = ' + '
7 :	'*'

How do we parse a Unit? def parse_Unit(self):

```
token_id = get_token_id(self.to_match)
    # Unit ::= '(' Expr ')'
    if token_id == "LPAR":
        self.eat("LPAR")
        self.parse_Expr()
        self.eat("RPAR")
        return
    # Unit :: = ID
    if token_id == "ID":
        self.eat("ID")
        return
    raise ParserException(-1,
        self.to_match, # observed token
        # line number (for you to do)
                                ["LPAR", "ID"]) # expected token
```

First+ sets:
1: \{'(', ID\}
2: $\left\{{ }^{\prime}+\prime,{ }^{\prime}{ }^{\prime \prime}\right\}$

Let's look at the grammar

1: Expr	:: = Unit Expr2
2: Expr2	: : = Op Unit Expr2
3 :	\|""
4: Unit	: : = ' ' Expr ')'
$5:$	ID
6: Op	$::=1+\prime$
7 :	'*'

How do we parse a Unit?

def parse_Unit(self):
token_id = get_token_id(self.to_match)
\# Unit : := "("Expr ')' ensure that to_match has token ID of "LPAREN"
$\begin{array}{cl}\text { if token_id == "LPAR": } & \text { and get the next token }\end{array}$
First+ sets:
1: \{'(', ID\}
$2:\left\{{ }^{\prime}+\prime,{ }^{\prime \prime}{ }^{\prime}\right\}$
\# Unit :: = ID
3: \{None, ' ' ' $\}$
if token_id == "ID":
self.eat("ID")
return
4: \{‘(‘\}
5: \{ID\}
6: $\left\{{ }^{\prime}+{ }^{\prime}\right\}$
7: \{‘*'\}
raise ParserException(-1 , $\begin{array}{ll}\text { self.to_match, } & \text { \# observed token } \\ [" L P A R ", ~ " I D "]) ~ & \text { \# expected token }\end{array}$

Let's look at the grammar

1: Expr	: : = Unit Expr2
2: Expr2	:: = Op Unit Expr2
3 :	\|""
4: Unit	: : = ' (Expr ')'
5 :	\| ID
6: Op	$::=1+1$
7 :	'*'

How do we parse an Op?

```
First+ sets:
1: {'(`, ID}
2: {'+', '*'}
3: {None, ')'}
4: {`(`}
5: {ID}
6: {'+'}
7:{'*'}
```


Let's look at the grammar

1: Expr	: : = Unit Expr2
2: Expr2	:: = Op Unit Expr2
3:	\|""
4: Unit	: : = '(Expr ')'
5 :	ID
6: Op	: $:=1+{ }^{\prime}$
7 :	'*'

```
def parse_Op(self):
token_id = get_token_id(self.to_match)
# Op ::= '+'
if token_id == "PLUS":
        self.eat("PLUS")
        return
    # Op ::= '*'
    if token_id == "MULT":
        self.eat("MULT")
        return
```

raise ParserException(-1,
\# line number (for you to do)
self.to_match, \# observed token ["MULT", "PLUS"]) \# expected token
First+ sets:
1: \{'(", ID\}
2: $\left\{{ }^{\prime}+\prime,{ }^{\prime}\right.$ *' $\}$
3: \{None, ' ' ' $\}$
4: \{"(‘\}
5: \{ID\}
6: $\left\{{ }^{\prime}+{ }^{\prime}\right\}$
7: \{‘*'\}

Quiz

parsing $\mathrm{An} \mathrm{LL}(1)$ grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

Quiz

parsing $\mathrm{An} \mathrm{LL}(1)$ grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

Quiz

parsing $\mathrm{An} \mathrm{LL}(1)$ grammar has a runtime proportional to:

The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

Quiz

parsing An LL(1) grammar has a runtime proportional to:

The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

Likely plays a small role, but typically the number of non-terminals is much smaller than the input string

Quiz

parsing An LL(1) grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

Quiz

parsing $\mathrm{An} \operatorname{LL}(1)$ grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

Good answer, but potentially the input string is one giant ID. Then the parser simply needs to match one token.

Quiz

parsing $\mathrm{An} \operatorname{LL}(1)$ grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

Quiz

parsing $\mathrm{An} \operatorname{LL}(1)$ grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input stringHow many times a backtrack might occur

The parser needs to match every single token once. This is the correct answer

Quiz

parsing $\mathrm{An} \operatorname{LL}(1)$ grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input string
How many times a backtrack might occur

Quiz

parsing $\mathrm{An} \mathrm{LL}(1)$ grammar has a runtime proportional to:The number of non-terminalsThe length of the input stringThe number of tokens in the input string
How many times a backtrack might occur

Backtracking is not required for $\mathrm{LL}(1)$ grammar

Review

Do we need backtracking?

The First+ set is the combination of First and Follow sets
1: Expr }::==\mathrm{ Unit Expr2
1: Expr
3:
1: Expr }::==\mathrm{ Unit Expr2
5:
1: Expr
7 :

```
```

```
First+ sets:
```

```
First+ sets:
```

1: {`(`, ID}

```
1: {`(`, ID}
2: {'+', '*'}
2: {'+', '*'}
3: {None, ')'}
3: {None, ')'}
4: {'(`}
4: {'(`}
5: {ID}
5: {ID}
6: {'+'}
6: {'+'}
7: {'*'}
```

7: {'*'}

```

For each non-terminal: if every production has a disjoint First+ set then we do not need any backtracking!

\section*{Do we need backtracking?}

The First+ set is the combination of First and Follow sets
\begin{tabular}{|c|c|c|}
\hline & & First+ sets: \\
\hline 1: Expr & : : = Unit Expr2 & 1: \{ ' \({ }^{\prime}\), ID \(\}\) \\
\hline 2: Expr2 & : : = Op Unit Expr2 & 2: \(\mathbf{\prime}^{\prime}+{ }^{\prime},{ }^{\prime \prime}\) '\} \\
\hline 3 : & " & 3: \{None, ')'\} \\
\hline 4: Unit & \(::=\) '('Expr ')' & 4: \{ ' \(\left.{ }^{\prime}\right\}\) \\
\hline \(5:\) & ID & 5: \{ID \} \\
\hline 6: Op & \(::=1+\prime\) & 6: \{' \({ }^{\prime}\) '\} \\
\hline 7 : & '*' & \(7:\left\{{ }^{\prime \prime}\right.\) \} \\
\hline
\end{tabular}

For each non-terminal: if every production has a disjoint First+ set then we do not need any backtracking!

\section*{Sometimes the grammar needs to be refactored}
```

1: Factor ::= ID
2: | ID '[`Args ']'

```

\section*{Sometimes the grammar needs to be refactored}


\section*{Sometimes the grammar needs to be refactored}
```

First
1: Factor ::=
2: | ID '['Args ']'
1: {ID}
2: {ID}
3: {ID}

```

We cannot select the next rule based on a single look ahead token!

\section*{Sometimes the grammar needs to be refactored}


We can refactor
\begin{tabular}{|c|c|c|}
\hline & & First \\
\hline 1: Factor & ::= ID Option_args & 1: \{ID \\
\hline 2: Option_args & : : = '[، Args ']' & 2: \{ ' \(\left.{ }^{\prime}\right\}\) \\
\hline 3 : & '('Args ')' & 3: \{ ' \({ }^{\prime \prime}\) \} \\
\hline 4 : & " " & 4: \({ }^{\prime \prime \prime}\) " \(\}\) \\
\hline
\end{tabular}

\section*{Sometimes the grammar needs to be refactored}
```

First
1: Factor ::= ID
2: \: ID '[`Args ']'
1: {ID}
2: {ID}
3: {ID}

```

We can refactor
```

First
1: {ID}
2: {'['}
3: {'('}
4: {""} // We will need to compute the follow set

```
1: Factor \(::=\) ID Option_args
2: Option_args \(::=\) "['Args ']'
2: Option_args \(::=\) "['Args ']'
4 :
    ""

\section*{Sometimes the grammar needs to be refactored}
```

1: Factor ::= ID
2: | ID '['Args ']'

```
First
1: \{ID\}
2: \{ID\}
3: \{ID\}

It is not always possible to rewrite grammars into a predictive form, but many programming languages can be.

We can refactor
```

First
1: {ID}
2: {'['}
3: {`(`}
4: {""} // We will need to compute the follow set

```
```

1: Factor ::= ID Option_args
2: Option_args ::= "[` Args ']'
3:
4:

```

New material

\section*{Scope}
- What is scope?
- Can it be determined at compile time? Can it be determined at runtime?
- C vs. Python
- Anyone have any interesting scoping rules they know of?

\section*{Scope}

\section*{- Lexical scope example}
```

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;
}
x+=1;
y+=1;

```

What are the final values in \(x\) and \(y\) ?

\section*{Scope}
- We can catch certain variable scope errors at parse time
- e.g. if a variable was declared in the current scope or not

\section*{Scope}

\section*{- Lexical scope example}
```

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;
}
x+=1;
y+=1;

```
```

int x = 0;
{
int y = 0;
x+=1;
y+=1;
}
x+=1;
y+=1;

```

\section*{Scope}

\section*{- Lexical scope example}
```

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;
}
x+=1;
y+=1;

```
```

int x = 0;
{
int y = 0;
x+=1;
y+=1;
}
x+=1;
y+=1;
undeclared!

```

How to track scope?

\section*{How to track scope?}
- Symbol table object
- two methods:
- lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
- insert(id,info) : insert a new id (or overwrite an existing id) into the symbol table along with a set of information about the id.

\section*{a very simple programming language}

ID = [a-z]+
INCREMENT \(=\) " \(\backslash+\backslash+"\)
TYPE = "int"
\[
\begin{aligned}
& \text { int } \mathrm{x} \text {; } \\
& \mathrm{x}++ \text {; } \\
& \text { int } \mathrm{y} \text {; } \\
& \mathrm{y}^{++} ;
\end{aligned}
\]

LBRAC = " \(\left\{{ }^{\prime \prime}\right.\)
RBRAC \(="\} "\)
SEMI = ";"
statements are either a declaration or an increment

\section*{a very simple programming language}

ID = [a-z] +
INCREMENT \(=" \backslash+\backslash+"\)
TYPE = "int"
\[
\text { int } x ;
\]
\[
\{
\]
int y;
x++;

LBRAC = "\{"
y++;

RBRAC \(="\} "\)
\[
\}
\]
y++;

SEMI = ";"
statements are either a declaration or an increment

\section*{a very simple programming language}

ID = [a-z] +
INCREMENT \(=" \backslash+\backslash+"\)
TYPE = "int"
LBRAC = " \(\{"\)
```

int x;

```

RBRAC \(="\} "\)
\}

SEMI = ";"
statements are either a declaration or an increment

\section*{How to track scope?}

\section*{- SymbolTable ST;}

Say we are matched the statement: int x;

\section*{declare_statement ::= TYPE ID SEMI}
\{ \}
lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
insert(id,info) : insert a new id (or overwrite an existing id) into the symbol table along with a set of information about the id.

\section*{How to track scope?}
- SymbolTable ST;

Say we are matched the statement: int \(x\);
declare_statement ::= TYPE ID SEMI
\{
    self.eat(TYPE)
    variable_name = self.to_match[1] \# lexeme value
    self.eat(ID)
    ST.insert(variable_name,None)
    self.eat(SEMI)
\}

\section*{How to track scope?}

\section*{- SymbolTable ST;}

> Say we are matched string: \(x++;\)

\section*{inc_statement ::= ID INCREMENT SEMI}
\{ \}
lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
insert(id,info) : insert a new id (or overwrite an existing id) into the symbol table along with a set of information about the id.

\section*{How to track scope?}
- SymbolTable ST;

> Say we are matched string: \(x^{++}\);
```

inc_statement ::= ID INCREMENT SEMI
{
variable_name = self.to_match[1] \# lexeme value
if ST.lookup(variable_name) is None:
raise SymbolTableException(variable_name)
self.eat(ID)
self.eat(INCREMENT)
self.eat(SEMI)
}

```

\section*{How to track scope?}
- SymbolTable ST;
statement : LBRAC statement_list RBRAC
int \(x\);
\{
        int \(y\);
        x++;
        \(\mathrm{y}++\);
\}
\(y^{++} ;\)
    \(y^{++}\)

\section*{How to track scope?}
- SymbolTable ST;
statement : LBRAC statement_list RBRAC
```

int x;
{
int y;
x++;
y++;
}
y++;

```
start a new scope \(S\)
remove the scope \(S\)

\section*{How to track scope?}
- Symbol table
- four methods:
- lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
- insert(id,info) : insert a new id into the symbol table along with a set of information about the id.
- push_scope() : push a new scope to the symbol table
- pop_scope() : pop a scope from the symbol table

\section*{How to track scope?}

\section*{- SymbolTable ST;}
statement : LBRAC statement_list RBRAC

You will be adding the functions to push and pop scopes in your homework

\section*{How to implement a symbol table?}
- Thoughts? What data structures are good at mapping strings?
- Symbol table
- four methods:
- lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
- insert(id,info) : insert a new id into the symbol table along with a set of information about the id.
- push_scope() : push a new scope to the symbol table
- pop_scope() : pop a scope from the symbol table

\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:

\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:

\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:


\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:


\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:


\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:

\author{
lookup(id)
}

HT 1

HT 0

\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:


\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:


\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:

HT 1

HT 0

\section*{How to implement a symbol table?}
- Many ways to implement:
- A good way is a stack of hash tables:

\section*{How to implement a symbol table?}
- Example
```

int x = 0;
{
int y = 0;
y++;
x++;
}
x++;
y++;

```

Parser actions

\section*{Parser actions}
- Like token actions: perform an action each time a production option is matched. Useful for: tracking state

\section*{Parser actions}
- Like token actions: perform an action each time a production option is matched.
- Typically performed after the entire production action is matched
- Useful for:
- tracking state

\section*{Example}
- SymbolTable ST;

Say we are matched the statement: int \(x\);
declare_statement ::= TYPE ID SEMI
\{
    self.eat(TYPE)
    variable_name = self.to_match[1] \# lexeme value
    self.eat(ID)
    ST.insert(variable_name,None)
    self.eat(SEMI)
\}

\section*{Example}
```

Say we are matched the statement:
int x;

```
- SymbolTable ST;

Parser actions would be written like this
```

 $1 $2 $3
 declare statement ::= TYPE ID SEMI result of each symbol.
For a terminal it will be
the value
{
ST.insert(\$2, None);
}

What values get returned from nonterminals?

What values get returned from nonterminals?


```
{print $1; return "expr"}
{return "expr"}
{...}
```


What values get returned from nonterminals?

building a calculator

What values get returned from nonterminals?

building a calculator

$\{$ return $\$ 1+\$ 3\}$
$\{$ return $\$ 1-\$ 3\}$
$\{$ return $\$ 1\}$
$\{$ return $\$ 2\}$
$\{$ return $\$ 1\}$

Shortcomings of parser actions

Difficult to perform actions in the middle of a production

-SymbolTable ST;
statement : LBRAC statement_list RBRAC

```
int x;
{
    int y;
    x++;
    y++;
}
Y++;
```


Parser generators

- You provide the CFG, along with some hints, you get a parser back
- They typically use bottom-up parsers
- Algorithm is more complicated
- Able to handle more types of grammars naturally
- Able to naturally encode precedence and associativity
- Examples of tools:
- Yacc, Antrl, PLY

calculator example

These slides follow the calculator example from the PLY documentation

calculator example

```
import ply.lex as lex
tokens = ["NUM", "MULT", "PLUS", "MINUS", "DIV", "LPAR", "RPAR"]
t_NUM = '[0-9]+'
t_MULT = '\*'
t_PLUS = '\+'
t_MINUS = '-
t_DIV = '/'
t_LPAR = '\('
t_RPAR = '\)'
t_ignore = '
# Error handling rule
def t_error(t):
    print("Illegal character '%s'" % t.value[0])
    exit(1)
lexer = lex.lex()

\section*{calculator example}
- Import the library
import ply.yacc as yacc
- Simple rule
def p_expr_num(p):
"expr : NUM"
\(\mathrm{p}[0]=\operatorname{int}(\mathrm{p}[1])\)
functions are given prefixed by \(\mathrm{p}_{\text {_ }}\)
production rules are the doc string
return values are stored in \(\mathrm{p}[0]\)
children values are in \(p[1], p[2]\), etc.
calculator example
- Try it out

\section*{calculator example}
- Next rule
def p_expr_plus(p):
"expr : expr PLUS expr"
\(p[0]=p[1]+p[3]\)
- Try it again
calculator example
- Set associativity (and precedence)
```

precedence = (
('left', 'PLUS'),
)

```

\section*{calculator example}

\section*{- Next rules}
```

def p_expr_minus(p):
"expr : expr MINUS expr"
p[0] = p[1] - p[3]
def p_expr_mult(p):
"expr : expr MULT expr"
p[0] = p[1] * p[3]
def p_expr_div(p):
"expr : expr DIV expr"
p[0] = p[1] / p[3]

```

\section*{calculator example}
- Last rule for expressions
```

def p_expr_par(p):
"expr : LPAR expr RPAR"
p[0] = p[2]

```

\section*{calculator example}
- An extra we can easily implement
```

def p_expr_div(p):
"expr: expr DIV expr"
if p[3] == 0:
print("divide by 0 error:")
print("cannot divide: " + str(p[1]) + " by 0")
exit(1)
p[0] = p[1] / p[3]

```

\section*{calculator example}

\section*{- Combining rules:}
```

def p_expr_plus(p):
"expr : expr PLUS expr"
p[0] = p[1] + p[3]

```
def p_expr_minus(p):
    "expr : expr MINUS expr"
    \(\mathrm{p}[0]=\mathrm{p}[1]-\mathrm{p}[3]\)
def p_expr_mult(p):
    "expr : expr MULT expr"
    \(\mathrm{p}[0]=\mathrm{p}[1] * \mathrm{p}[3]\)
```

def p_expr_bin(p):
expr : expr PLUS expr
expr MINUS expr
expr MULT expr
""""
if p[2] == '+':
p[0] = p[1] + p[3]
elif p[2] == '-':
p[0] = p[1] - p[3]
elif p[2] == '*':
p[0] = p[1] * p[3]
else:
assert(False)

```

\section*{calculator example}
- Other useful options
- Error recovery
- Error reporting (it is better in our top down parsers)
- Question: how would we do a calculator implementation in our Csimple grammar? It is not left recursive so it is not as natural...

\section*{See you on Wednesday!}
- Work on HW 2
- Starting the next module: intermediate representations```

