
CSE110A: Compilers
April 20, 2022

Topics:
• Top down parsing
• Lookahead sets
• Recursive descent parsers

• Symbol Tables

..

.. ..

....

int main() {
printf(““);
return 0;
}

Announcements

• HW 2 is out!
• due on May 2 at midnight
• you will have what you need for all of part 1 after today
• you should have what you need for part 2 after today
• you should have what you need for part 3 on Friday

• Plenty of time for help for HW 2
• Conceptually and implementation-wise it is bigger than HW 1. I suggest you get

started on it early

• Midterm will be given on May 2
• Take home midterm.
• Assigned on Monday and due on Friday
• No late midterms are accepted

Quiz

We’ll revisit a few of the questions from the last quiz

Quiz

What is the issue with left recursion?

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Can we derive the string a

What could a demonic
choice do?

Expanded Rule Sentential Form

start Expr

Variable Value

focus

to_match

s.istring

stack

1: Expr ::= Expr ‘+’ ID
2: | ID

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Can we derive the string a

What could a demonic
choice do?

Expanded Rule Sentential Form

start Expr

1 Expr + ID

1 Expr + ID + ID

1 Expr + ID + ID + ID

...

...

...

Variable Value

focus

to_match

s.istring

stack

1: Expr ::= Expr ‘+’ ID
2: | ID

infinite recursion

Eliminating direct left recursion

Fee ::= Fee A
| B

Fee ::= B Fee2

Fee2 ::= A Fee2
| “”

A and B can be any sequence of non-terminals and terminals

Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
| B

Fee ::= B Fee2

Fee2 ::= A Fee2
| “”

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
| B

Fee ::= B Fee2

Fee2 ::= A Fee2
| “”

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

A = Op Unit
B = Unit

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”

How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2: | Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

How about indirect left recursion?

1: Expr_base ::= Unit
2: | Expr_base Op Unit
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

inline indirect non-terminal

Identify indirect left left recursion

It is always possible to eliminate left recursion

Quiz

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

cache_state();
pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (to_match == None and focus == None)
Accept

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (we have a cached state)
backtrack();

else
parser_error()

Expanded Rule Sentential Form

start Expr

1: Expr ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2

| ””

Can we match: “a”?

Keep track of what
choices we’ve done

Backtracking gets complicated...

• Do we need to backtrack?
• In the general case, yes
• In many useful cases, no

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Expanded Rule Sentential Form

start Expr

1 ID Expr2

Variable Value

focus Expr2

to_match None

s.istring “”

stack None

1: Expr ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2
3: | ””

Can we match: “a”?

Could we make a smarter choice here?

The First Set
For each production choice, find the set
of tokens that each production can start with

First sets:
1: {}
2: {}
3: {}
4: {}
5: {}
6: {}
7: {}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

The First Set
For each production choice, find the set
of tokens that each production can start with

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

We can use first sets to decide which rule to pick!

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Variable Value

focus

to_match

s.istring

stack

We simply use to_match and compare it
to the first sets for each choice

For example, Op and Unit

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Quiz

Class discussion

New material

• The Follow set
• The First+ set
• Recursive descent parser

The Follow Set

We need to find the tokens that any string
that follows the production can start with.

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Follow sets:
1: NA
2: NA
3: {}
4: NA
5: NA
6: NA
7: NA

Rules with “” in their First set need special attention

The Follow Set

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Follow sets:
1: NA
2: NA
3: {None, ’)’}
4: NA
5: NA
6: NA
7: NA

We need to find the tokens that any string
that follows the production can start with.

Rules with “” in their First set need special attention

The First+ Set

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Follow sets:
1: NA
2: NA
3: {None, ’)’}
4: NA
5: NA
6: NA
7: NA

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

Do we need backtracking?

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

Do we need backtracking?

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

Do we need backtracking?

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

These grammars are called LL(1)
• L - scanning the input left to right
• L - left derivation
• 1 - how many look ahead symbols

They are also called predictive grammars

Many programming languages are LL(1)

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {}
2: {}
3: {}
...

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

We cannot select the next
rule based on a single look ahead
token!

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: | ‘(‘ Args ‘)’
4: | “”

We can refactor

First
1: {}
2: {}
3: {}
4: {}

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: | ‘(‘ Args ‘)’
4: | “”

We can refactor

First
1: {ID}
2: {‘[‘}
3: {‘(‘}
4: {“”} // We will need to compute the follow set

Sometimes the grammar needs to be
refactored

1: Factor ::= ID
2: | ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: | ‘(‘ Args ‘)’
4: | “”

We can refactor

It is not always possible to
rewrite grammars into a
predictive form, but many
programming languages can be.

First
1: {ID}
2: {‘[‘}
3: {‘(‘}
4: {“”} // We will need to compute the follow set

We now have a full top-down parsing
algorithm!

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

To pick the next rule, compare to_match with the possible first+ sets.
Pick the rule whose first+ set contains to_match.

If there is no such rule then it is a parsing error.

input grammar,
refactored to remove
left recursion

First+ sets for each
production rule

Moving on to a simpler implementation:

Recursive Descent Parser

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Let’s look at the grammar
How do we parse an Expr?1: Expr ::= Unit Expr2

2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Let’s look at the grammar
How do we parse an Expr?
We parse a Unit followed by an Expr2

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Let’s look at the grammar

We can just write exactly that!

How do we parse an Expr?
We parse a Unit followed by an Expr2

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

def parse_Expr(self):
self.parse_Unit();
self.parse_Expr2();
return

Let’s look at the grammar
How do we parse an Expr2? 1: Expr ::= Unit Expr2

2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Expr2?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Expr2?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Expr2(self):

token_id = get_token_id(self.to_match)

Expr2 ::= Op Unit Expr2
if token_id in ["PLUS", "MULT"]:

self.parse_Op()
self.parse_Unit()
self.parse_Expr2()
return

Expr2 ::= ""
if token_id in [None, ”RPAR"]:

return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["PLUS", "MULT", ”RPAR"]) # expected token

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse a Unit?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse a Unit?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Unit(self):

token_id = get_token_id(self.to_match)

Unit ::= ‘(‘ Expr ‘)’
if token_id == "LPAR":

self.eat("LPAR")
self.parse_Expr()
self.eat("RPAR")
return

Unit :: = ID
if token_id == "ID":

self.eat("ID")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["LPAR", "ID"]) # expected token

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse a Unit?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Unit(self):

token_id = get_token_id(self.to_match)

Unit ::= ‘(‘ Expr ‘)’
if token_id == "LPAR":

self.eat("LPAR")
self.parse_Expr()
self.eat("RPAR")
return

Unit :: = ID
if token_id == "ID":

self.eat("ID")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["LPAR", "ID"]) # expected token

ensure that to_match has token ID of “LPAREN”
and get the next token

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse a Unit?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Unit(self):

token_id = get_token_id(self.to_match)

Unit ::= ‘(‘ Expr ‘)’
if token_id == "LPAR":

self.eat("LPAR")
self.parse_Expr()
self.eat("RPAR")
return

Unit :: = ID
if token_id == "ID":

self.eat("ID")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["LPAR", "ID"]) # expected token

ensure that to_match has token ID of “LPAREN”
and get the next token

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Op?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

Let’s look at the grammar
1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How do we parse an Op?

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

def parse_Op(self):

token_id = get_token_id(self.to_match)

Op ::= '+'
if token_id == "PLUS":

self.eat("PLUS")
return

Op ::= '*'
if token_id == "MULT":

self.eat("MULT")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["MULT", "PLUS"]) # expected token

Moving on: Scope

Scope

• What is scope?

• Can it be determined at compile time? Can it be determined at
runtime?

• C vs. Python

• Anyone have any interesting scoping rules they know of?

One consideration: Scope

• Lexical scope example

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1; What are the final values in x and y?

How to track scope?

• Symbol table object

• two methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id (or overwrite an
existing id) into the symbol table along with a set
of information about the id.

What information might we store about an id?

a very simple programming language

int x;
x++;
int y;
y++;

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LBRAC = “{“
RBRAC = “}”
SEMI = “;”

statements are either a declaration or an increment

a very simple programming language

int x;
{
int y;
x++;
y++;

}
y++;

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LBRAC = “{“
RBRAC = “}”
SEMI = “;”

statements are either a declaration or an increment

a very simple programming language

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LBRAC = “{“
RBRAC = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
int y;
x++;
y++;

}
y++;

error!

How to track scope?

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{}

Say we are matched the statement:
int x;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

declare_statement ::= TYPE ID SEMI
{

self.eat(TYPE)
variable_name = self.to_match[1] # lexeme value
self.eat(ID)
ST.insert(variable_name,None)
self.eat(SEMI)

}

Say we are matched the statement:
int x;

How to track scope?

• SymbolTable ST;

inc_statement ::= ID INCREMENT SEMI
{}

Say we are matched string:
x++;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

inc_statement ::= ID INCREMENT SEMI
{

variable_name = self.to_match[1] # lexeme value
if ST.lookup(variable_name) is None:

raise SymbolTableException(variable_name)
self.eat(ID)
self.eat(INCREMENT)
self.eat(SEMI)

}

Say we are matched string:
x++;

How to track scope?

• SymbolTable ST;

statement : LBRAC statement_list RBRAC

int x;
{
int y;
x++;
y++;

}
y++;

How to track scope?

• SymbolTable ST;

statement : LBRAC statement_list RBRAC

start a new scope S remove the scope S

int x;
{
int y;
x++;
y++;

}
y++;

How to track scope?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to track scope?

• SymbolTable ST;

statement : LBRAC statement_list RBRAC

You will be adding the functions to push and pop scopes in your homework

How to implement a symbol table?

• Thoughts? What data structures are good at mapping strings?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to implement a symbol table?

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

HT 0base scope

How to implement a symbol table?

HT 0push_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

push_scope()

adds a new
Hash Table
to the top of the stack

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

insert (id -> data) at
top hash table

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

check here
first

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id) then check
here

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

pop_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

• Example

HT 0

int x = 0;
int y = 0;
{
int y = 0;
x++;
y++;

}
x++;
y++;

Stack of hash tables

See you on Friday!

• We will discuss parser generators

