CSE110A: Compilers

April 20, 2022

Topics:

e Top down parsing
* Lookahead sets
* Recursive descent parsers

* Symbol Tables

int main() {
printf(“*);
return 0;

}

N

Announcements

e HW 2 is out!

* due on May 2 at midnight

* you will have what you need for all of part 1 after today
e you should have what you need for part 2 after today

* you should have what you need for part 3 on Friday

* Plenty of time for help for HW 2

e Conceptually and implementation-wise it is bigger than HW 1. | suggest you get
started on it early

* Midterm will be given on May 2
* Take home midterm.
* Assigned on Monday and due on Friday
* No late midterms are accepted

We’ll revisit a few of the questions from the last quiz

Quiz

To prepare a grammar for a top-down parser, you must ensure that there is no recursion, except in
the right-most element of any production rule.

O True

O False

What is the issue with left recursion?

root = start symbol; 1
focus = root; 2
push (None) ;

to_match = s.token();

: Expr ::= Expr ‘+'’ ID

What could a demonic
choice do?
while (true):

if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);

push(BN... B3, B2); . .
focus = Bl Can we derive the string a

else if (focus == to match)
to match = s.token()

Expanded Rule Sentential Form
focus = pop()

start Expr
else if (to match == None and focus == None)
Accept

Variable Value
focus

to_match

s.istring

stack

root = start symbol; 1

: Expr ::= Expr ‘+'’ ID
focus = root;

2: ID
push (None) ; _
to match = s.token(); tht could a demonic
choice do?
while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2); . .
focus = B1 Can we derive the string a
else if (focus == to match)
to_match = s.token() Expanded Rule Sentential Form
focus = pop()
start Expr
else if (to match == None and focus == None)
— 1 Expr + ID
Accept
1 Expr+ID +ID
1 Expr+ID+ID+1ID
Variable Value P
focus
to_match
s.istring
stack

infinite recursion

Eliminating direct left recursion

A and B can be any sequence of non-terminals and terminals

Fee ::= Fee A Fee B Fee?2

B

A Fee?2

| un

Fee?2

Eliminating direct left recursion

l: EXxpr ::= Expr Op Unit
2: Unit

3: Unit ::= ‘(' Expr ')’
4: ID

5: Op = 4

6 Lk !

Lets do this one as an example:

Fee t::= B Fee?2
Fee ::= Fee A
B ' Fee2 ::= A Fee?2

Eliminating direct left recursion A= Op Ui

B = Unit
l: EXxpr ::= Expr Op Unit
2 Unit l: Expr ::= Unit Expr2
3: Unit =::= ‘(' Expr ')’ 2: Expr2 ::= Op Unit Expr2
43 D 3 | nn
5: Op = I
6: Lk

Lets do this one as an example:

Fee t::= B Fee?2
Fee ::= Fee A
B ' Fee2 ::= A Fee?2

How about indirect left recursion?

: Expr base ::= Unit

| EXpr_op

: Expr op ::= Expr base Op Unit
: Unit ::= ‘(' Expr_base ')’
| ID

: Op T

| 1 %7

o) W © 2 BT~ U TR O B
oo oo oo

Identify indirect left left recursion Expr_base — < Expr_op — s Expr_base

How about indirect left recursion?

l: Expr base ::= Unit

2 | Expr base Op Unit
3: ExXpr_op ::= Expr base Op Unit
4: Unit ::= ‘(' Expr_base ')’
5: | ID

6: Op 2= Y+

7 | Lkt

Identify indirect left left recursion Expr base — hs EXpr_op —ns Expr base

inline indirect non-terminal

It is always possible to eliminate left recursion

It is only possible to write a top-down parser if you can determine exactly which production rule to

apply at each step.

O True

O False

root = start symbol;

focus = root; l: Expr ::= ID Expr2
push (None) ; 2: Expr2 ::= ‘+' ExXpr2
to match = s.token(); e
Keep track of what
while (true): choices we’ve done
if (focus is a nonterminal)
cache state();
pick next rule (A ::= B1,B2,B3...BN); Can we match: “@”?
if Bl == “": focus=pop(); continue;
push(BN... B3, B2);
focus = Bl
Expanded Rule Sentential Form
else if (to match == None and focus == None) start Expr
Accept
else if (focus == to match)

to match = s.token()
focus = pop()

else if (we have a cached state)
backtrack();

else
parser error()

Backtracking gets complicated...

* Do we need to backtrack?
* In the general case, yes
* In many useful cases, no

root = start symbol;
focus = root;

push (None) ;

to match = s.token();

l: Expr ::= ID Expr2
2: ExXpr2 ::= '+’ EXpr2
3: nun

Could we make a smarter choice here?

while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
if Bl == “": focus=pop(); continue;
push(BN... B3, B2);
focus = Bl

else if (focus == to match)
to match = s.token()
focus = pop()

else if (to match == None and focus == None)
Accept

Variable Value

focus Expr2

to_match None

s.istring “

stack None

Can we match: “a@”?

Expanded Rule Sentential Form
start Expr
1 ID Expr2

The First Set

For each production choice, find the set
of tokens that each production can start with

First sets:

l: Expr := Unit Expr?2 1: {}
2: Expr2 ::= Op Unit Expr2 2: {}
3: “r 3: {}
4: Unit := ‘(' Expr ')’ 4: {}
5¢ 1D 5: {}
6: Op se= 4+ 6: {}
7: Fk S 7: {}

The First Set

For each production choice, find the set
of tokens that each production can start with

First sets:

l: Expr := Unit Expr2 l: {*(*, ID}
2: Expr2 ::= Op Unit Expr?2 2: {'+", ‘*'}
3: “n 3: {“"}
4: Unit :t= ‘(' Expr ')’ 4: {'("'}
5: ID 5: {ID}
6: Op = 4! 6: {'+'}
7: Lkt 7: {'*"}

We can use first sets to decide which rule to pick!

root = start symbol;

. . l: Expr ::= Unit Expr2
ocus = root; . e :
push (None) ; g. Expr2 ..”"Op Unit Expr2
to match = s.token(); * _
4: Unit ::= ‘(' Expr ')’
while (true): 5: ID
if (focus is a nonterminal) 6: Op 1= 47
pick next rule (A ::= B1,B2,B3...BN); 7 e 1%
push(BN... B3, B2);
focus = Bl
First sets:
else if (focus == to match) 1: {‘(*, ID}
to match = s.token() 2: {147, 1%}
focus = pop() 3: {“"}
else if (to match == None and focus == None) d: {7 (")
A - 5: {ID}
ccept
6 . { 1 + ’ }
. 1 g7
Variable Value 7: A }
focus
to_match We simply use to_match and compare it
B — to the first sets for each choice
stack

For example, Op and Unit

Quiz

In many cases, a top-down parser requires the grammar to be re-written. Write a few sentences

about why this might be an issue when developing a compiler and how the issues might be
addressed.

Class discussion

New material

* The Follow set
e The First+ set

* Recursive descent parser

N OO0 b WDN R

The Follow Set

Expr
Expr2

Unit

::= Unit Expr2
::= Op Unit Expr2

“n

t:= ‘(' Expr ')’

ID

s o= 147

1 %7

Rules with “” in their First set need special attention

First sets: Follow sets:
l1: {*(*, ID} l: NA
2: {'+7, +*r} 2: NA
3: {“"} 3: {}
4: {'("} 4: NA
5: {ID} 5: NA
6: {'+'} 6: NA
7: {'*"} 7: NA

We need to find the tokens that any string
that follows the production can start with.

N OO0 b WDN R

The Follow Set

Expr
Expr2

Unit

::= Unit Expr2
::= Op Unit Expr2

“n

t:= ‘(' Expr ')’

ID

s o= 147

1 %7

Rules with “” in their First set need special attention

First sets: Follow sets:
l1: {’(', ID} l: NA

2: {'+7, +*r} 2: NA

3: {“"} 3: {None, ')’}
4: {'("} 4: NA

5: {ID} 5: NA

6: {'+'} 6: NA

7: {'*"} 7: NA

We need to find the tokens that any string
that follows the production can start with.

N OO0 b WDN R

The First+ Set

The First+ set is the combination of First and Follow sets

First sets: Follow sets: First+ sets:
Expr ::= Unit Expr2 1: {‘(*, ID} 1: NA 1: {’(*, ID}
Expr2 ::= Op Unit Expr2 2: {‘+', ‘*'} 2: NA 2: {'+", '*"}
o 3: {“"} 3: {None, ')’} 3: {None, ')’}
Unit ::= ‘(' Expr ')’ 4: {' ("'} 4: NA 4: {'("'}
ID 5: {ID} 5: NA 5: {ID}
Op se= ‘47 6: {'+'} 6: NA 6: {'+'}
Y T: {**'} 7: NA 7: {'*"}

N OO0 b WDN R

Do we need backtracking?

The First+ set is the combination of First and Follow sets

First+ sets:
{‘(*, ID}
{I_I_I, l*l}

Expr ::= Unit Expr?2
Expr2 ::= Op Unit Expr?2

1:
2:
e 3: {None, ')’}
Unit ::= ‘(' Expr ')’ 4: {'('}
ID 5: {ID}
Op HEE R 6: {‘'+'}
Y T: {**'}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

N OO0 b WDN R

Do we need backtracking?

The First+ set is the combination of First and Follow sets

First+ sets:

Expr ::= Unit Expr2 1: {'(’, ID}

Expr2 ::= Op Unit Expr2 2: {'+", '*"}
“m 3: {None, ')’}
Unit ::= ‘(' Expr ‘)’ 4: {'('}
ID 5: {ID}
Op pi= 04 6: {'+'}
1% 7 7 {l*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

N OO0 b WDN R
e o0 o0 (X)

Do we need backtracking?

: EXpr
: Expr2

¢ Unit

::= Unit Expr2
::= Op Unit Expr2

“n

t:= ‘(' Expr '

ID

s o= 147

1 %7

The First+ set is the combination of First and Follow sets

First+ sets: These grammars are called LL(1)

y ,-, — * L-scanning the input left to right
ENoné ’) %} e |- IEft derivation

(' (') e 1-how many look ahead symbols
{ID}

{+7) They are also called predictive grammars
{"*"}

)I

~N OOl W N
(X) (X) (X) (X] (X) (X)

Many programming languages are LL(1)

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

Sometimes the grammar needs to be
refactored

l: Factor ::= ID
2 | ID ‘[‘ Args ‘]’
3: | ID ‘(' Args ‘)’

Sometimes the grammar needs to be
refactored

First
l: Factor ::= ID 1: {}
2 | ID ‘[‘ Args ‘]’ 2: {}

3: | ID ‘(‘ Args ‘)’ 3: {}

Sometimes the grammar needs to be
refactored

First
l: Factor ::= ID l1: {ID}
2 | ID ‘[‘ Args ‘]’ 2: {ID}
3: | ID ‘(‘ Args ‘)’ 3: {ID}

We cannot select the next
rule based on a single look ahead
token!

Sometimes the grammar needs to be
refactored

First

l: Factor ::= ID l: {ID}
2 | ID ‘[‘ Args ‘]’ 2: {ID}
3: | ID ‘(‘ Args ‘)’ 3: {ID}
We can refactor

First
l: Factor = ID Option args 1: {}
2: Option args ::= ‘[’ Args ‘]’ 2: {}
3: | ‘(* Args ')’ 3: {}
4: | “n 4: {}

Sometimes the grammar needs to be
refactored

First
l: Factor ::= ID l: {ID}
2 | ID ‘[‘ Args ‘]’ 2: {ID}
3: | ID ‘(‘ Args ‘)’ 3: {ID}
We can refactor

First

l: Factor = ID Option args 1: {ID}
2: Option args ::= ‘[‘’ Args ‘]’ 2: {'["}
3: | ‘(' Args ')’ 3: {'("}
4 | “ 4: {“"} // We will need to compute the follow set

Sometimes the grammar needs to be

refactored

l: Factor ::= ID
2: |
3: |

We can refactor

: Factor

: Option args ::
|

|

= W N -

ID l[l
ID ‘(' Args ')’

Args ‘']’

= ID Option args

l[l Args l]l
l(l Args l)l

“n

First

1: {ID}
2: {ID}
3: {ID}

First
l: {ID}
2: {'["}
3: {"("}
4: {""}

It is not always possible to
rewrite grammars into a
predictive form, but many
programming languages can be.

// We will need to compute the follow set

We now have a full top-down parsing
algorithm!

root = start symbol; First+ sets:
focus = root; l: {‘(’, ID} l: EXpr ::= Unit Expr?2
push(None) ; 2: {'+", '*x'} 2: Expr2 ::= Op Unit Expr2
tO_matCh = S .token() ;s 3. {None, ’) r } 3 un
4: {'(* 4: Unit ::= ‘(' Expr ')’
while (true): 5. Elé}} 5 iD P)
if (focus is a nonterminal) 6: Py 6: o Col i
pick next rule (A ::= B1,B2,B3...BN); : {,*,} : P T
push(BN... B3, B2); 7: {'*"} 7: *
focus = Bl
. First+ sets for each input grammat,
else if (focus == to_match) production rule refactored to remove
to match = s.token() .
— left recursion
focus = pop()
else if (to match == None and focus == None)

Accept

To pick the next rule, compare to _match with the possible first+ sets.
Pick the rule whose £irst+ set contains to _match.

If there is no such rule then it is a parsing error.

Moving on to a simpler implementation:

Recursive Descent Parser

Let’s look at the grammar

: Expr ::= Unit Expr2
: Expr2 ::= Op Unit Expr2

“n

: Unit ::= ‘(' Expr ‘)’

: Op 2= 4!

N OO WD R

Let’s look at the grammar

: Expr ::= Unit Expr2
: Expr2 ::= Op Unit Expr2

“n

: Unit ::= ‘(' Expr ‘)’

How do we parse an Expr?

: Op 2= 4!

N OO WDN R

Let’s look at the grammar

: Expr ::= Unit Fxprz How do we parse an Expr?
: Expr2 ::= Op Unit Expr2 We parse a Unit followed by an Expr2

“n

: Unit ::= ‘(' Expr ‘)’

: Op te= IS

N OO WDN R

Let’s look at the grammar

1: Expr ::= Unit dbjeisl How do we parse an Expr?

;2:, : BEXpr2 : :f" Op Unit Expr2 We parse a Unit followed by an Expr2
4: Unit =::= ‘(' Expr ')’

5: ID

6: Op = A4

72 f% 7

We can just write exactly that!

def parse_Expr(self):
self.parse_Unit();
self.parse_Expr2();
return

Let’s look at the grammar

: Expr ::= Unit Expr2 How do we parse an Expr2?
: Expr2 ::= Op Unit Expr2

a“n

: Unit ::= ‘(' Expr ‘)’

: Op 2= 4!

R o) W © 2 Y SN OO T O i
.o .0 oo

Let’s look at the grammar

l: Expr ::= Unit Expr2 How do we parse an Expr2?
2: Expr2 ::= Op Unit Expr?2

3: “n

4: Unit ::= ‘(' Expr ')’

5: ID

6: Op 2= '+

7z L%t

First+ sets:

1: {‘(*, ID}

2: {I+I, l*l}
3: {None, ')’}
d: {'('}
5: {ID}
6: {'+'}
7: {'*'}

Let’s look at the grammar

l: Expr ::= Unit Expr?2

2: Expr2 ::= Op Unit Expr2
3: e

4: Unit =::= ‘(' Expr ')’
5: ID

6: Op = A4

72 L&

First+ sets:
1: {'(’, ID}
2: {47, *7}
3: {None, ')’}
4: {'("}

5: {ID}

6: {'+'}

7: {'*'}

How do we parse an Expr2?

def parse_Expr2(self):

= get_token_id(self.to_match)

Expr2 ::= Op Unit Expr2

if token_id in ["PLUS™, "MULT"]:
self.parse_0p()
self.parse_Unit()
self.parse_Expr2()
return

Expr2 i:=""
if token_id in [None, "RPAR"]:
return

raise ParserException(-1,
self.to_match,

line number (for you to do)
observed token

["PLUS™, "MULT"™, "RPAR"]) # expected token

Let’s look at the grammar

l: Expr ::= Unit Expr2 How do we parse a Unit?
2: Expr2 ::= Op Unit Expr?2

3: “n

4: Unit =::= ‘(' Expr ')’

5: ID

6: Op 2= '+

7z fx !

First+ sets:

1: {‘(*, ID}

2: {I+I, l*l}
3: {None, ')’}
d: {'('}
5: {ID}
6: {'+'}
7: {'*'}

Let’s look at the grammar

l: Expr ::= Unit Expr?2

2: Expr2 ::= Op Unit Expr?2
3: “

4: Unit ::= ‘(' Expr ')’
5: ID

6: Op = A4

72 L&

First+ sets:
1: {'(’, ID}
2: {l_l_l, l*l}
3: {None, ')’}
4: {'("}

5: {ID}

6: {'+'}

7: {'*'}

How do

def parse_Unit(self):

we parse a Unit?

= get_token_id(self.to_match)

Unit ::= ‘(' Expr

if token_id == "LPAR":
self.eat("LPAR")
self.parse_Expr()
self.eat("RPAR")

I)I

return
Unit :: = ID
if token_id == "ID":
self.eat("ID")
return
raise ParserException(-1, # line number (for you to do)

self.to_match, # observed token
["LPAR", "ID"]) # expected token

Let’s look at the grammar

l: Expr ::= Unit Expr?2

2: Expr2 ::= Op Unit Expr?2
3: “

4: Unit ::= ‘(' Expr ')’
5: ID

6: Op = A4

72 L&

First+ sets:
1: {'(’', ID}
D,)
3: {None, ')’}

: {'("}

: {ID}
6: {'+'}
7: {'*'}

How do we parse a Unit?

def parse_Unit(self):

= get_token_id(self.to_match)

Unit ::= ‘(° Expr ‘)’
if token_id == "LPAR": ensure that to_match has token ID of “LPAREN”

self.eat("LPAR")
self.parse_Expr() and get the next token

self.eat("RPAR")

return

Unit :: = ID

if token_id == "ID":
self.eat("ID")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["LPAR", "ID"]) # expected token

Let’s look at the grammar

l: Expr ::= Unit Expr?2

2: Expr2 ::= Op Unit Expr?2
3: “

4: Unit ::= ‘(' Expr ')’
5: ID

6: Op = A4

72 L&

First+ sets:
1: {'(’', ID}
D,)
3: {None, ')’}

: {'("}

: {ID}
6: {'+'}
7: {'*'}

How do we parse a Unit?

def parse_Unit(self):

= get_token_id(self.to_match)

Unit ::= ‘(° Expr ‘)’
if token_id == "LPAR": ensure that to_match has token ID of “LPAREN”

self.eat("LPAR")
self.parse_Expr() and get the next token

self.eat("RPAR")

return

Unit :: = ID

if token_id == "ID":
self.eat("ID")
return

raise ParserException(-1, # line number (for you to do)
self.to_match, # observed token
["LPAR", "ID"]) # expected token

Let’s look at the grammar

l: EXpr ::= Unit Expr?2 How do we parse an Op?
2: Expr2 ::= Op Unit Expr?2

3: “n

4: Unit ::= ‘(' Expr ')’

5: ID

6: Op = ‘4

72 G50

First+ sets:

1: {‘(', ID}

2: {I+I, l*l}
3: {None, ')’}
d: {'('}
5: {ID}
6: {'+'}
7: {'*'}

Let’s look at the grammar

l: Expr ::= Unit Expr?2

2: Expr2 ::= Op Unit Expr?2
3: “

4: Unit =::= ‘(' Expr ')’
5: ID

6: Op se= ‘4!

7z G50

First+ sets:
1: {‘(*, ID}
2: {l_l_I, l*l}
3: {None, ')’}

4: {'("}
5: {ID}
6: {'+'}

7: {'*'}

How do we parse an Op?

def parse_Op(self):

= get_token_id(self.to_match)

#0p ::= '+
if token_id == "PLUS":
self.eat("PLUS")
return
#0p ::= 'x'
if token_id == "MULT":
self.eat("MULT")
return
raise ParserException(-1, # line number (for you to do)

self.to_match, # observed token
["MULT"™, "PLUS"]) # expected token

Moving on: Scope

Scope
* What is scope?

e Can it be determined at compile time? Can it be determined at
runtime?

* Cvs. Python

* Anyone have any interesting scoping rules they know of?

One consideration: Scope

* Lexical scope example

What are the final values in x and y?

How to track scope?

* Symbol table object

 two methods:

* lookup(id) : lookup an id in the symbol table.
Returns None i1f the id is not in the symbol table.

* insert(id,info) : insert a new 1id (or overwrite an
existing 1d) into the symbol table along with a set
of information about the id.

What information might we store about an id?

a very simple programming language

ID = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”

LBRAC = “{“

RBRAC = “}”

SEMI = “”

statements are either a declaration or an increment

a very simple programming language

ID = [a-z]+ int x;
INCREMENT = “\+\+” -
int y;

TYPE = ”int” X++;
LBRAC = “{ y++;

_ }
RBRAC = “} s
SEMI = “”

statements are either a declaration or an increment

a very simple programming language

ID = [a-z]+ int x;
INCREMENT = “\+\+” -

int yj;
TYPE = ”int” X++;
LBRAC = “{ y++;
RBRAC = “}” -}
SEMI = “”

statements are either a declaration or an increment

How to track scope?

Say we are matched the statement:
int x;

e SymbolTable ST;

declare statement ::= TYPE ID SEMI
{}

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

e SymbolTable ST;

declare_statement ::= TYPE ID SEMI

{
self.eat (TYPE)

Say we are matched the statement:
int x;

variable name = self.to match[l] # lexeme value

self.eat(ID)

ST.insert(variable name,None)

self.eat (SEMI)

How to track scope?

Say we are matched string:

* SymbolTable ST; X+

Inc_statement ::= ID INCREMENT SEMI
{}

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

. SymbolTable ST; Say we are matched string:
X++;
inc_statement ::= ID INCREMENT SEMI
{
variable name = self.to match[l] # lexeme value

if ST.lookup(variable name) is None:

raise SymbolTableException(variable name)
self.eat(ID)

self.eat (INCREMENT)
self.eat (SEMI)

How to track scope?

e SymbolTable ST; int x;
{
int y;
statement : LBRAC statement_list RBRAC s
ytt;
}

How to track scope?

e SymbolTable ST; int x;
{ .
statement : LBRAC statement_list RBRAC ;Y '
ytt;
}
y++;

start a new scope S remove the scope S

How to track scope?

* Symbol table

* four methods:
* lookup(id) : lookup an id in the symbol table.
Returns None i1f the id is not in the symbol table.

* insert(id,info) : insert a new id into the symbol
table along with a set of information about the 1id.

* push scope() : push a new scope to the symbol table

* pop scope() : pop a scope from the symbol table

How to track scope?

e SymbolTable ST;

statement : LBRAC statement_list RBRAC

You will be adding the functions to push and pop scopes in your homework

How to implement a symbol table?

* Thoughts? What data structures are good at mapping strings?

* Symbol table

e four methods:

* lookup(id) : lookup an id in the symbol table.
Returns None i1f the id is not in the symbol table.

* insert(id,info) : insert a new i1d into the symbol
table along with a set of information about the 1id.

* push scope() : push a new scope to the symbol table

* pop scope() : pop a scope from the symbol table

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

base scope HT O

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

push_scope() HT O

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

adds a new
Hash Table HT 1
to the top of the stack

push_scope() HT O

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

insert (id,data)

HTO

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables: | |
insert (1d -> data) at

top hash table

HT 1

insert (id,data)

HTO

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

lookup (id) HT O

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

check here

first HT1

lookup (id) HT O

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

lookup (id) theEecrI;eck HT O

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

pop_scope() HT O

Stack of hash tables

How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HTO

Stack of hash tables

How to implement a symbol table?

int x = 0;
* Example int y = 0;

{
int y = 0;
X++;
ytt;

}

X++;

yt+;

HTO

Stack of hash tables

See you on Friday!

* We will discuss parser generators

