
CSE110A: Compilers
April 1, 2022

• Topics:
• Lexical Analysis

• Introduction
• Scanners
• Ad hoc scanner
• Limitations

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Announcements

• We have a room for office hours!

Announcements

• Docker setup instructions are available

• https://sorensenucsc.github.io/CSE110A-sp2022/homework-setup.html

• We will add the required software needed for the HWs to the docker
image.

• Please try this out over the next few days and let us know if you have issues

• Your code must run in the docker to be graded!
• There can be tons of tiny differences when developing Python natively

https://sorensenucsc.github.io/CSE110A-sp2022/homework-setup.html

Quiz

Compiler Warnings

Compiler Warnings

int foo(int condition) {
int x;
if (condition) {

x = 5;
}
int y = x;
return y;

}

Clang gives a warning

Compiler Warnings

int foo(int condition) {
int x;
if (condition) {

x = 5;
}
int y = x;
return y;

}

What if its only called like this?

int main() {
foo(1);
return 0;

}

Uninitialized variables

Uninitialized variables

• Docker vs OSX Demo
• Docker is consistent at low optimization
• Docker is not consistent at high optimizations
• OSX is not consistent

Compilers modifying code

Compilers modifying code

• Consider this:

int write_data_to_file(char * data) {
f = fopen("data.txt");
f.write(data);
f.close();
return 0;

}

int write_data_to_file(char * data) {
return 0;

}

Can the compiler transform it to this?

Compilers modifying code

• Consider this:

int write_data_to_file(char * data) {
f = fopen("data.txt");
f.write(data);
f.close();
return 0;

}

int write_data_to_file(char * data) {
return 0;

}

Can the compiler transform it to this? NO

Anything that a function
does that has an effect outside
of itself is called a “side effect”

Compilers modifying code

• Consider another one:

int signal(int * flag) {
*flag = 1;
return 0;

}

Can the compiler transform it to this? NO

int signal(int * flag) {
return 0;

}

Memory writes cannot be optimized!

Compilers modifying code

• Consider another one:

int signal(int * flag) {
*flag = 1;
return 0;

}

Can the compiler transform it to this? NO

int signal(int * flag) {
return 0;

}

Are memory reads side effects?

Compilers modifying code

• Consider another one:

int signal(int * flag) {
*flag = 1;
return 0;

}

int wait(int * flag) {
while (*flag != 0);
return 0;

}

Can the compiler transform it to this?

int signal(int * flag) {
return 0;

}

Can the compiler transform it to this?

int wait(int * flag) {
return 0;

}

Recent issues discovered by UCSC grad students!

https://gitlab.freedesktop.org/mesa/mesa/-/issues/4475

https://gitlab.freedesktop.org/mesa/mesa/-/issues/4475

Benefits to modular compiler design

Benefits to modular compiler design

Optimizations
Optimizations

Optimizations
Front end

input
program

machine
code

Medium detailed view

Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

creates
structure

string

produces
executable code

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Review

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

More detailed view

string token stream syntax tree syntax tree

IR program

optimized IR
program

ISA program

optimized ISA program

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

ISA program

optimized ISA program

front end
parser

creates structure

Let’s do a quick review tour through the front end

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

More detailed view

string token stream syntax tree syntax tree

IR program

optimized IR
program

ISA program

optimized ISA program

position = initial + rate * 60;

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

optimized ISA program

position = initial + rate * 60;

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

id name info

1 position float

2 initial float

3 rate float

Symbol table

Token stream

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

=

<id,1>

<id,2>

<id,3> 60

+

*

Syntax tree

position = initial + rate * 60;

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

=

<id,1>

<id,2>

<id,3> 60

+

*

Syntax tree

position = initial + rate * 60;

Can we multiply a
float by an integer?

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

=

<id,1>

<id,2>

<id,3>

60

+

*

Syntax tree

position = initial + rate * 60;

int_to_float

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

token stream syntax tree syntax tree

IR program

optimized IR
program

=

<id,1>

<id,2>

<id,3>

60

+

*

Syntax tree

position = initial + rate * 60;

int_to_float

%r0 = int_to_float(60);
%r1 = %r0 * id3;
%r2 = %r1 + id2;
%id1 = %r2;

IR program

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
gen

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

optimized ISA program

position = initial + rate * 60;

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

id name info

1 position float

2 initial float

3 rate float

Symbol table

Token stream

First module

Schedule

• Introduction Lexical Analysis

• Programs for Lexical Analysis

• Lexical analysis of a simple programming language

• naïve implementation

Schedule

• Introduction Lexical Analysis

• Programs for Lexical Analysis

• Lexical analysis of a simple programming language

• naïve implementation

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

My dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

New Question

Can we define a simple language using these building blocks?

• ARTICLE
• NOUN
• VERB
• ADJECTIVE

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

ARTICLE NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Question mark means optional

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

My Old Computer Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

The Purple Dog Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

grammatically correct,
semantically correct?

The Purple Dog Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

What other sentences can you construct?

ARTICLE ADJECTIVE? NOUN VERB
How could we expand the language?

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

ARTICLE ADJECTIVE? NOUN VERB
What other languages can you specify?

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

What other languages can you specify?

ARTICLE ADJECTIVE* NOUN VERB

repeat (0 or more times)

Lexical Analysis Labels Parts of Speech

• Parser (module 2) will talk about the organization of the parts of
speech

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Lexical Analysis Parser
ARTICLE ADJECTIVE* NOUN VERB

Schedule

• Introduction Lexical Analysis

• Programs for Lexical Analysis

• Lexical analysis of a simple programming language

• naïve implementation

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Tokens Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex_(software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Scanner API

// Constructor, generates a Scanner
s = ScannerGenerator(tokens)

// The string we want to do
// lexical analysis on
s.input(“My Old Computer Crashed“)

Scanner API

What do we want?

Scanner API

What do we want?

“My Old Computer Crashed”

Scanner

Scanner API

What do we want?

“My Old Computer Crashed”

Scanner

[(ARTICLE), (ADJECTIVE), (NOUN), (VERB)]
Useful, but we might need more information

Scanner API

What do we want?

“My Old Computer Crashed”

Scanner

Lexeme: (TOKEN, value)

[(ARTICLE), (ADJECTIVE), (NOUN), (VERB)]
Useful, but we might need more information

Scanner API

What do we want?

“My Old Computer Crashed”

Scanner

[(ARTICLE, “My”), (ADJECTIVE, “Old”), (NOUN, “Computer”), (VERB, “Crashed”)]

Scanner API

What do we want?

“My Old Computer Crashed”

Scanner

Lexeme: (TOKEN, value)

[(ARTICLE, “My”), (ADJECTIVE, “Old”), (NOUN, “Computer”), (VERB, “Crashed”)]

Scanner API

What do we want?

“My Old Computer Crashed”

Scanner classically, this occurs one lexeme at a time

[(ARTICLE, “My”), (ADJECTIVE, “Old”), (NOUN, “Computer”), (VERB, “Crashed”)]

Scanner API

// Constructor, generates a Scanner
s = ScannerGenerator(tokens)

// The string we want to do
// lexical analysis on
s.input(“My Old Computer Crashed“)

// Returns the next lexeme
s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()
(ARTICLE, “My”)
> s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()
(ARTICLE, “My”)
> s.token()
(ADJECTIVE, “Old”)
> s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()
(ARTICLE, “My”)
> s.token()
(ADJECTIVE, “Old”)
> s.token()
(NOUN, “Computer”)

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()
(ARTICLE, “My”)
> s.token()
(ADJECTIVE, “Old”)
> s.token()
(NOUN, “Computer”)
> s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()
(ARTICLE, “My”)
> s.token()
(ADJECTIVE, “Old”)
> s.token()
(NOUN, “Computer”)
> s.token()
(VERB, “Crashed”)
> s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()
(ARTICLE, “My”)
> s.token()
(ADJECTIVE, “Old”)
> s.token()
(NOUN, “Computer”)
> s.token()
(VERB, “Crashed”)
> s.token()
None

Schedule

• Introduction Lexical Analysis

• Programs for Lexical Analysis

• Lexical analysis of a simple programming language

• naïve implementation

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables, assignments, non-negative integers

x = 5 + 4 * 3;

What tokens should we have? Ideas?

example

Lexical analysis of a simple programming lang.

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

maybe something like this?

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables, assignments, non-negative integers

Lexical analysis of a simple programming lang.

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

maybe something like this?

[(ID, x), (ASSIGN, “=“), (NUM, ”5”), (PLUS, “+”) ,
(NUM, “4”), (MULT, “*”), (NUM, “3”)]

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables, assignments, non-negative integers

Lexical analysis of a simple programming lang.

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

maybe something like this?

Other options for tokens
we could define?

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables, assignments, non-negative integers

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables and assignments

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

maybe something like this?

Other options for tokens
we could define?

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
OP = {“+”, “*”}

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables and assignments

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

maybe something like this?

Other options for tokens
we could define?

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
OP = {“+”, “*”}

(OP, “+”) (OP, “*”)

We can always
distinguish using the value

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables and assignments

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

maybe something like this?

Other options for tokens
we could define?

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables and assignments

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

maybe something like this?

Other options for tokens
we could define?

ID = [characters]
FIVE = “5”
FOUR = “4”
...
PLUS = “+”
MULT = “*”

what do we
think about this?

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables and assignments

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

What are we missing?

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables and assignments

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”

What are we missing?
whitespace!

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
• integer arithmetic (+,*)
• variables and assignments

x = 5 + 4 * 3;
example

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = “ “

What are we missing?
whitespace!

Typically* we ignore whitespace and newlines and tabs

*unless we are python 😖

Ignored tokens do not get returned as a lexeme

Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

White space is ignored because it is not meaningful!

Longest possible match

Consider the token:

• CLASS_TOKEN = {“cse”, “110”, “cse110”}

What would the lexemes be for: “cse110”

options:
• (CLASS_TOKEN, ”cse”) (CLASS_TOKEN, ”110”)
• (CLASS_TOKEN, ”cse110”)

Longest possible match

Consider the token:

• CLASS_TOKEN = {“cse”, “110”, “cse110”}

What would the lexemes be for: “cse110”

options:
• (CLASS_TOKEN, ”cse”) (CLASS_TOKEN, ”110”)
• (CLASS_TOKEN, ”cse110”)

This one!

Longest possible match

• Important for operators, e.g. in C
• ++, +=

how would we scan “x++;”

[(ID, “x”), (ADD, “+”), (ADD, “+”), (SEMI, “;”)]

[(ID, “x”), (INCREMENT, “++”), (SEMI, “;”)]

Longest possible match

Important for variable names and numbers

how would we scan: “my_var = 10;” ?

Longest possible match

Important for variable names and numbers

how would we scan: “my_var = 10;” ?

[(ID, “my_var”), (ASSIGN, “=”), (NUM, “10”), (SEMI, “;”)]

Schedule

• Introduction Lexical Analysis

• Programs for Lexical Analysis

• Lexical analysis of a simple programming language

• naïve implementation

Naïve implementation

• A scanner that implements

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Naïve implementation

Building block: class StringStream:
def __init__(self, input_string):

self.string = input_string

def is_empty(self):
return len(self.string) == 0

def peek_char(self):
if not self.is_empty():

return self.string[0]
return None

def eat_char(self):
self.string = self.string[1:]

Naïve implementation

First step in implementing the scanner

class NaiveScanner:

def __init__(self, input_string):
self.ss = StringStream(input_string)

def token(self):
if self.ss.is_empty():

return None

while self.ss.peek_char() in IGNORE:
self.ss.eat_char()

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Naïve implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):
...
if self.ss.peek_char() == "+":

value = self.ss.peek_char()
self.ss.eat_char()
return ("ADD", value)

if self.ss.peek_char() == "*":
value = self.ss.peek_char()
self.ss.eat_char()
return ("MULT", value)

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Naïve implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):
...
if self.ss.peek_char() in NUMS:

value = ""
while self.ss.peek_char() in NUMS:

value += self.ss.peek_char()
self.ss.eat_char()

return ("NUM", value)

ID = [characters]
NUM = [numbers]
ASSIGN = ”=“
PLUS = “+”
MULT = “*”
IGNORE = [“ “]

Code Demo

What are the issues with our Scanner?

• Think about it for next class, where we will discuss:

Regular Expressions!

