CSE110A: Compilers

April 1, 2022

dCross

- \ T

PREPOSITION

* Topics:
* Lexical Analysis
* Introduction
* Scanners

 Ad hoc scanner
* Limitations

Announcements

* We have a room for office hours!

TA Office Hours:
Mondays from 1 PM to 2 PM (Virtual)

Fridays from 2 PM to 3 P (Room BE-151)

Yanwen's office hours will be hybrid and he will use a similar sign-up sheet.

Mentoring Hours:

Arrian is Tuesday from 1 PM to 3 PM, virtual.

Neal is Wednesday 1:30 PM - 2:30 PM, virtual; and Friday 2 PM to 3 PM sharing a room with
Yanwen.

Announcements

* Docker setup instructions are available

e https://sorensenucsc.github.io/CSE110A-sp2022/homework-setup.html

* We will add the required software needed for the HWs to the docker
image.

* Please try this out over the next few days and let us know if you have issues

* Your code must run in the docker to be graded!
* There can be tons of tiny differences when developing Python natively

https://sorensenucsc.github.io/CSE110A-sp2022/homework-setup.html

Compiler Warnings

If the compiler gives you a warning, then your code definitely has an error

O True

(O False

Compiler Warnings

int foo(int condition) {
int Xx;
if (condition) {
X = 5;
}
int y = X;
return y;

Clang gives a warning

Compiler Warnings

Int 'FOO(ln't COndlthn) { What if its only called like this?

int Xx;
if (condition) {

X = 5; int main() {
} foo(1l);
int y = x; return 0;
return y; }

Uninitialized variables

An uninitialized variable can give you any value, however, the value that it gives you will be the same
each time you run the program

O True

O False

Uninitialized variables

* Docker vs OSX Demo
* Docker is consistent at low optimization
* Docker is not consistent at high optimizations
* OSX is not consistent

Compilers modifying code

Compilers are allowed to modify a function in any way just so long as it returns the same value as
the original function

O True

(O False

Compilers modifying code

e Consider this:

int write data to file(char * data) {
f = fopen("data.txt");
f.write(data);
f.close();
return 0;
} Can the compiler transform it to this?

int write data to file(char * data) {
return 0;

¥

Compilers modifying code

. . Anything that a function
e Consider this: does that has an effect outside
of itself is called a “side effect”

int write data to file(char * data) {
f = fopen("data.txt");
f.write(data);
f.close();
return 0;
} Can the compiler transform it to this? NO

int write data to file(char * data) {
return 0;

¥

Compilers modifying code

 Consider another one:

int signal(int * flag) {
*tlag = 1;
return 0;
} Memory writes cannot be optimized!

Can the compiler transform it to this? NO

int signal(int * flag) {
return 0;

¥

Compilers modifying code

 Consider another one:

int signal(int * flag) {
*tlag = 1;
return 0;
} Are memory reads side effects?

Can the compiler transform it to this? NO

int signal(int * flag) {
return 0;

¥

Compilers modifying code

 Consider another one:

int signal(int * flag) { int wait(int * flag) {
*flag = 1; while (*flag != 0);
return 9; return 9;
} }
Can the compiler transform it to this? Can the compiler transform it to this?
int signal(int * flag) { int wait(int * flag) {
return 0; return O;

} ¥

@ Vesa > @ mesa > Issues > #4475

m Opened 1 week ago by Q Reese Levine

Relaxed atomic loads in while loops being optimized away

Describe the issue

Recent issues discovered by UCSC grad students!

https://gitlab.freedesktop.org/mesa/mesa/-/issues/4475

https://gitlab.freedesktop.org/mesa/mesa/-/issues/4475

Benefits to modular compiler design

Benefits to modular compiler design

input
program

string

more about optimizations: https://stackoverflow.com/questions/15548023/clang-optimization-levels

-

.

parsing

creates
structure

‘ Front end ‘

compiler

Optimizations

—

voptimizations

build on each other

produces
executable code

Back

end

code gen

=)

/

Medium detailed view

machine
code

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Review

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
target code
gen
ISA program
target code loop!

optimizations

optimized ISA program _
machine

More detailed view code

IR p%gram

Input Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations P:
tri optimized IR
String K token stream SyntaX tree Syntax tree / program
front end target code
parser gen
creates structure
ISA program
target code loop!

optimizations

Let’s do a quick review tour through the front end

optimized ISA program _
machine

code

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
: optimized IR
string token stream syntax tree syntax tree program
. . .. target code
position = initial + rate * 60; gen
ISA program
target code loop!

gen

optimized ISA program _
machine

More detailed view code

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:

. optimized IR
St”ng token stream SyntaX tree Syntax tree program
position = initial + rate * 60; targg;::ode
Token stream
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

target code loop!
id name info gen oop:
1 position float
2 initial float
3 rate float optimized ISA program

machine
Symbol table code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
Token stream target code

gen

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

Syntax tree

/ \) targeé r(1:ode loop!
<id, 1> T — &

<id, 2> / *

\

<id, 3> 60

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
Token stream target code

gen

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

Syntax tree

/ \ target code loop!
gen

: +
<id, 1>
G / \ Can we multiply a

<id, 2> / * float by an integer?

<id, 3> 60

machine
code

position = initial + rate * 60;

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations '
. optimized IR
string token stream syntax tree syntax tree program
Token stream target code

gen

<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

Syntax tree

/ \ target code loop!]

<i + gen p:
id, 1> /// \\\\\\\

///// *

<id, 2>

T

int ‘to_float

<id, 3>

machine
60 code

position = initial + rate * 60;

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations '
optimized IR
token stream SyntaX tree Syntax tree program
Syntax tree
= target code
<id, 1> ///+~\\\\\\
<id, 2> / * ~_
_ int_to_float
<id, 3> target code
loop!
gen
60

IR program

$r0 = int to float(60);

¢rl = %r0 * J..d3; machine
¢rl + id2;

3r2;

o® oo
P R
o, N
|_l

Il
Il

code

First module

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations '

. optimized IR
St”ng token stream SyntaX tree Syntax tree program
position = initial + rate * 60; targg;::ode
Token stream
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

target code loop!
id name info gen oop:
1 position float
2 initial float
3 rate float optimized ISA program

machine
Symbol table code

Schedule

* Introduction Lexical Analysis
* Programs for Lexical Analysis
* Lexical analysis of a simple programming language

* naive implementation

Schedule

* Introduction Lexical Analysis
* Programs for Lexical Analysis
* Lexical analysis of a simple programming language

* naive implementation

Parsing is the first step in a compiler

* How do we parse a sentence in English?

Parsing is the first step in a compiler

* How do we parse a sentence in English?

The dog ran across the park

Parsing is the first step in a compiler

* How do we parse a sentence in English?

The dog ran across the park

-

ARTICLE

T

NOUN

VERB

PREPOSITION

ARTICLE

NOUN

Parsing is the first step in a compiler

* How do we parse a sentence in English?

-

ARTICLE

The dog ran across the park

T

Grammar and Syntax

What about semantics?

NOUN

VERB

PREPOSITION

ARTICLE

NOUN

Parsing is the first step in a compiler

* How do we parse a sentence in English?

The dog ran across the park

T

ARTICLE

NOUN

VERB

PREPOSITION

ARTICLE

Grammar and Syntax

What about semantics?

NOUN

Parsing is the first step in a compiler

* How do we parse a sentence in English?

My dog ran across the park

T

ARTICLE

NOUN

VERB

PREPOSITION

ARTICLE

Grammar and Syntax

What about semantics?

NOUN

New Question

Can we define a simple language using these building blocks?

* ADJECTIVE

A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

A Simple Language

* ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}
 VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

ARTICLE NOUN

VERB

A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

Question mark means optional

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

* ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

ARTICLE ADIJECTIVE? NOUN VERB
My Old Computer Crashed

A Simple Language

* ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

ARTICLE ADIJECTIVE? NOUN VERB
The Purple Dog Crashed

A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

grammatically correct,
semantically correct?

ARTICLE ADJECTIVE? NOUN VERB
The Purple Dog Crashed

A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

What other sentences can you construct?

How could we expand the language?

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

What other languages can you specify?

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

What other languages can you specify?

ARTICLE ADJECTIVE* NOUN VERB

repeat (0O or more times)

Lexical Analysis Labels Parts of Speech

* Parser (module 2) will talk about the organization of the parts of
speech

Lexical Analysis Parser

ADJECTIVE*

* ADJECTIVE = {Purple, Spotted, Old}

Schedule

* Introduction Lexical Analysis
* Programs for Lexical Analysis
* Lexical analysis of a simple programming language

* naive implementation

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

* ADJECTIVE

Tokens

{Purple, Spotted, Old}

Tokens Definitions

Programs for Lexical Analysis

Scanner (sometimes called lexer)

Defined by a list of tokens and definitions:

* ADJECTIVE

Tokens

{Purple, Spotted, Old}

Tokens Definitions

Original program:
Lex

https://en.wikipedia.org/wiki/Lex (software)

Popular implementations
Flex

https://en.wikipedia.org/wiki/Lex_(software)

Scanner API

// Constructor, generates a Scanner
s = ScannerGenerator(tokens)

// The string we want to do
// lexical analysis on

s.input(“My Old Computer Crashed”)

Scanner API

What do we want?

Scanner API

What do we want?

“My Old Computer Crashed”

l Scanner

Scanner API

What do we want?

“My Old Computer Crashed”

l Scanner

), (ADJECTIVE), (NOUN), (

)]

Useful, but we might need more information

Scanner API

What do we want?

“My Old Computer Crashed”

l Scanner

), (ADJECTIVE), (NOUN), (

)]

Useful, but we might need more information

Lexeme: (TOKEN, value)

Scanner API

What do we want?

“My Old Computer Crashed”

l Scanner

, “My”), (ADJECTIVE, “0l1d”), (NOUN,

“Computer”),

(

4

“Crashed”)]

Scanner API

What do we want?

“My Old Computer Crashed”

l Scanner

(, “My"”)} (ADJECTIVE, “0Ol1ld”), (NOUN, *“Computer”), (, “Crashed”)]

Lexeme: (TOKEN, value)

Scanner API

What do we want?

“My Old Computer Crashed”

l Sca nner classically, this occurs one lexeme at a time

, “My"”)} (ADJECTIVE, “0Ol1ld”), (NOUN, *“Computer”), (, “Crashed”)]

Scanner API

// Constructor, generates a Scanner
s = ScannerGenerator(tokens)

// The string we want to do
// lexical analysis on
s.1lnput(“My Old Computer Crashed”)

// Returns the next lexeme
s.token()

> s = ScanerGenerator(tokens)
> s.input(“My Old Computer Crashed”)
> s.token()

V~V VYV

s = ScanerGenerator (tokens)
s.input(“My Old Computer Crashed”)
s.token()

r “My™)
s.token()

V~V~YV VYV

s = ScanerGenerator (tokens)
s.input(“My Old Computer Crashed”)
s.token()

r “My™)
s.token()

ADJECTIVE, “01d")
s.token()

> s = ScanerGenerator(tokens)

> s.input(“My Old Computer Crashed”)
> s.token()

(r “My™)

> s.token()

(

ADJECTIVE, “01ld")
> s.token()
(NOUN, “Computer”)

> s = ScanerGenerator(tokens)

> s.input(“My Old Computer Crashed”)
> s.token()

(r “My™)

> s.token()

(

ADJECTIVE, “01d")
> s.token()
(NOUN, “Computer”)
> s.token()

s = ScanerGenerator (tokens)
s.input(“My Old Computer Crashed”)
s.token()
r “My™)
s.token()
ADJECTIVE, “01d")
s.token()
(NOUN, “Computer”)
> s.token()
(, “Crashed”)
> s.token()

V~V~YV VYV

s = ScanerGenerator (tokens)
s.input(“My Old Computer Crashed”)
s.token()
r “My™)
s.token()
ADJECTIVE, “01d")
s.token()
NOUN, “Computer”)
s.token()
(, “Crashed”)
> s.token()
None

V~V~V~YV VYV

Schedule

* Introduction Lexical Analysis
* Programs for Lexical Analysis
* Lexical analysis of a simple programming language

* naive implementation

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables, assighments, non-negative integers

example

X=5+4%*3;

What tokens should we have? Ideas?

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
* integer arithmetic (+,*)
* variables, assighments, non-negative integers

example

X=5+4%*3;

maybe something like this?

ID = [characters]
NUM = [numbers]
ASSIGN = "="

PLUS = “+"

MULT = “*n"

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language

* integer arithmetic (+,*)

* variables, assighments, non-negative integers

maybe something like this?

ID

NUM
ASSIGN
PLUS
MULT

[characters]
[numbers]

"n—u

II+II

"yn

example

X=5+4%*3;

[(ID, X),

(NUM,

“4my, (MULT,

(ASSIGN,

u*"),

ll=ll), (NUM,

(NUM,

n5m), (PLUS,
ll3ll)]

ll+ll) ’

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables, assighments, non-negative integers

example Other options for tokens
we could define?
maybe something like this? X = 5 + 4 * 3)
ID = [characters]
NUM = [numbers]
ASSIGN = "="
PLUS = 4"

MULT = “%"

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables and assignments

example Other options for tokens
" we could define?

maybe something like this? X = 5 + 4 3)
ID = [characters] 1D = [characters]
NUM = [numbers] NUM = [numbers]
ASSIGN = "= ASSIGN = "=*
PLUS = 4“4 OP SR
MULT = M*xn

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables and assignments

example Other options for tokens
" we could define?

maybe something like this? X = 5 + 4 3)
ID = [characters] 1D = [characters]
NUM = [numbers] (OP, “+") (OP, “*") NUM = [numbers]
ASSIGN = "=" We can always ASSIGN = -
PLUS = M4 distinguish using the value OP = {“+", “*"}
MULT = M*xn

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables and assignments

example Other options for tokens
we could define?
maybe something like this? X = 5 + 4 * 3)
ID = [characters]
NUM = [numbers]
ASSIGN = "="
PLUS = 4"

MULT = “%"

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language

* integer arithmetic (+,*)

* variables and assignments

maybe something like this?

ID

NUM
ASSIGN
PLUS
MULT

[characters]
[numbers]

"n—u

II+II

"yn

example

X=5+4%*3;

what do we
think about this?

Other options for tokens
we could define?

ID

FIVE
FOUR
PLUS
MULT

[characters]
115"
114"

ll+ll

"y

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables and assignments

example What are we missing?
X=5+4%*3:
ID = [characters]
NUM = [numbers]
ASSIGN = "="
PLUS = 4+
MULT = “%”

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables and assignments

example What are we missing?
whitespace!
X=5+4%*3:

ID = [characters]

NUM = [numbers]

ASSIGN = "=*

PLUS = “+”

MULT = H*x0r

Lexical analysis of a simple programming lang.

Lets write tokens and definitions for a simple programming language
e integer arithmetic (+,*)
* variables and assignments

example What are we missing?
— sk . whitespace!
X=5+4%*3;
ID = [characters]
NUM = [numbers]
ASSIGN = "=* | | | |
PLUS — ugw Typically* we ignore whitespace and newlines and tabs
MULT — bgen Ilgnored tokens do not get returned as a lexeme
IGNORE = “ “
*unless we are python &

Parsing is the first step in a compiler

* How do we parse a sentence in English?

The dog ran across the park

-

ARTICLE

T

NOUN

VERB

PREPOSITION

ARTICLE

White space is ignored because it is not meaningful!

NOUN

Longest possible match

Consider the token:

* CLASS TOKEN = {“cse”, “110", "“csellO"}
What would the lexemes be for: “cse110”

options:

* (CLASS TOKEN, "cse”) (CLASS TOKEN, "”110")
* (CLASS TOKEN, "csell0")

Longest possible match

Consider the token:

* CLASS TOKEN = {“cse”, *“110", "“csell0"}
What would the lexemes be for: “cse110”

options:

* (CLASS TOKEN, "cse”) (CLASS TOKEN, "”110")
* (CLASS TOKEN, "csell0")

This one!

Longest possible match

* Important for operators, e.g. in C
¢ ++, +=

how would we scan “x++; "
[(ID, “x"), (ADD, “+"), (ADD, “+"), (SEMI, “;")]

[(ID, “x"), (INCREMENT, “++"), (SEMI, “;")]

Longest possible match

Important for variable names and numbers

how would we scan: “my var = 10;" ?

Longest possible match

Important for variable names and numbers

how would we scan: “my var = 10;" ?

[(ID, “my wvar”), (ASSIGN, “="), (NUM, “10"), (SEMI, “;")]

Schedule

* Introduction Lexical Analysis
* Programs for Lexical Analysis
* Lexical analysis of a simple programming language

* naive implementation

Naive implementation

* A scanner that implements

ID = [characters]
NUM = [numbers]
ASSIGN = "="

PLUS = M4

MULT = 0V

IGNORE = [“ “]

Naive implementation

crqe class StringStream:
BU”dmg block: def __init_ (self, input_string):
self.string = input_string

def is_empty(self):
return len(self.string) ==

def peek_char(self):
if not self.is_empty():
return self.string[0]
return None

def eat_char(self):
self.string = self.string[1:]

Naive implementation

First step in implementing the scanner

class NaiveScanner:

def __init_ (self, input_string):
self.ss = StringStream(input_string) ID = [characters]
] NUM = [numbers]
de ’_coken(self).l . ASSIGN = "=#
if self.ss.is_empty():
return None PLUS = "+
hil 1f k_char() HMoLT -
while self.ss.peek_char() in IGNORE: T
self.ss.eat_char() LDl []

Naive implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):

1f self.ss.peek_char() == "+": D = [characters]
value = self.ss.peek_char() _
self.ss.eat_char() NUM = [numbers]
return ("ADD", value) ASSIGN = "=
PLUS = 4“4
if self.ss.peek_char() == "x": MULT — uxw
value = self.ss.peek_char() IGNORE = ["]

self.ss.eat_char()
return ("MULT", value)

Naive implementation

First step in implementing the scanner

class NaiveScanner:

def token(self):

if self.ss.peek_char() in NUMS: 1D = [characters]
while self.ss.peek_char() in NUMS: NUM = [numbers]
+= self.ss.peek_char() ASSIGN = "=
self.ss.eat_char() PLUS = 4

return ("NUM", value)
MULT = “%"

IGNORE = [“ “]

Code Demo

What are the issues with our Scanner?

* Think about it for next class, where we will discuss:

Regular Expressions!

