
CSE110A: Compilers
April 18, 2022

Topics: 
• Top down parsing
• Dealing with left recursion
• Lookahead sets

..

.. ..

....

int main() {
printf(““);
return 0;
}



Announcements

• HW 1 is due today
• No guaranteed help after business hours (e.g. after class at 5 PM)

• HW 2 is scheduled for release today by midnight
• you have two weeks to do it.
• due on May 2 at midnight
• you have what you need for part 1 today
• you should have what you need for part 2 on Wednesday
• you should have what you need for part 3 on Friday

• Plenty of time for help for HW 2!



Announcements

• Homework clarification: token actions
• You can use lists, functions, variables etc in tokens.py as token actions
• These components get bound to the tokens array
• You should only use the token array in your scanners, and you should be 

prepared to accept as input any token arrays
• Your token array should be an array of tuples:

(TOKEN_ID     : string, 
TOKEN_REGEX  : string, 
TOKEN_ACTION : lexeme → lexeme) 



Quiz

Unfortunately Monday’s lecture put us behind
and we weren’t able to get through all the
material we needed for the quiz again

To make up for it, I will make Friday’s quiz due 
on Wednesday so that you can answer the
extra questions with enough background



Quiz



Quiz



What about for a different operator?
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <MINUS> expr

<MINUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

Which one is right?

Evaluates
(2-3) - 4 Evaluates

2 - (3 - 4)



Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2> <MINUS>expr expr

<NUM, 3> <NUM, 4>

No longer allowed

Operator Name Productions

- expr : expr MINUS NUM
| NUM



Quiz



Quiz

Not really a cause of ambiguous grammars



Quiz



Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr ::= NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Evaluations are different!



Avoiding Ambiguity

Operator Name Productions

+,- expr : expr PLUS expr
| expr MINUS expr
| term

* term : term TIMES term
| pow

^ pow : pow ^ pow
| factor

() factor : LPAREN expr RPAREN
| NUM

Precedence
increases going down

• new production rules
• One non-terminal for each level of 

precedence
• lowest precedence at the top
• highest precedence at the bottom



Quiz

What is commutativity?



Quiz

What is commutativity?  a + b == b + a



Quiz

What is commutativity?  a + b == b + a Parsing doesn’t really consider
commutativity, but optimizations will



Quiz

We’re doing this a little out of order



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Can we derive the string (a+b)*c

Currently we assume this 
is magic and picks
the right rule every time

1: Expr ::= Expr Op Unit
2:      |   Unit
3: Unit ::= ‘(‘ Expr ‘)’
4:       |    ID
5: Op   ::= ‘+’
6:       |   ‘*’

Expanded Rule Sentential Form

start Expr

1 Expr Op Unit

2 Unit Op Unit

3 ( Expr ) Op Unit

1 ( Expr Op Unit) Op Unit

2 ( Unit Op Unit) Op Unit

Variable Value

focus Expr

to_match ‘a‘

s.istring “+b)*c”

stack Op Unit ) Op Unit None



Quiz

We’re doing this a little out of order

Answer: 
• true with what we’ve seen so far
• true if you want an efficient parser
• false in general



Quiz
We will answer these ones today in class



Review

• Let’s do a few more examples of top down parsing



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Can we derive the string a

Currently we assume this 
is magic and picks
the right rule every time

1: Expr ::= Expr ‘+’ ID
2:      |   ID

Expanded Rule Sentential Form

start Expr

Variable Value

focus Expr

to_match

s.istring

stack



One more example



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Can we derive the string a+b

Currently we assume this 
is magic and picks
the right rule every time

Expanded Rule Sentential Form

start Expr

Variable Value

focus Expr

1: Expr ::= Expr ‘+’ ID
2:      |   ID



New material

• We are going to zoom in on:

pick next rule (A ::= B1,B2,B3...BN);

So far this rule has been
magic. Let’s start by
turning that magic off



New material

• We are going to zoom in on:

pick next rule (A ::= B1,B2,B3...BN);

So far this rule has been
magic. Let’s start
turning that magic off

what could the most demonic 
choice do...



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Can we derive the string a

What could a demonic
choice do?

Expanded Rule Sentential Form

start Expr

Variable Value

focus

to_match

s.istring

stack

1: Expr ::= Expr ‘+’ ID
2:      |   ID



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Can we derive the string a

What could a demonic
choice do?

Expanded Rule Sentential Form

start Expr

1 Expr ‘+’ ID

1 Expr ‘+’ ID ‘+’ ID

1 Expr ‘+’ ID ‘+’ ID ‘+’ ID

1 ....

1 ....

1 ....

Variable Value

focus

to_match

s.istring

stack

1: Expr ::= Expr ‘+’ ID
2:      |   ID

Infinite recursion!



Top down parsing does not handle left
recursion

direct left recursion

1: Expr ::= Expr Op Unit
2:      |   Unit
3: Unit ::= ‘(‘ Expr ‘)’
4:       |    ID
5: Op   ::= ‘+’
6:       |   ‘*’



Top down parsing does not handle left
recursion

direct left recursion
indirect left recursion

Top down parsing cannot handle either

1: Expr ::= Expr Op Unit
2:      |   Unit
3: Unit ::= ‘(‘ Expr ‘)’
4:       |    ID
5: Op   ::= ‘+’
6:       |   ‘*’

1: Expr_base ::= Unit
2:      |   Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |    ID
6: Op   ::= ‘+’
7:           |   ‘*’



Top down parsing does not handle left
recursion
Luckily
• In general, any CFG can be re-written without left recursion



Eliminating direct left recursion

Fee ::= Fee “a”
|   “b”

What does this grammar describe?



Eliminating direct left recursion

Fee ::= Fee “a”
|   “b”

Fee  ::= “b” Fee2

Fee2 ::= “a” Fee2
|    “”

The grammar can be rewritten as



Eliminating direct left recursion

Fee ::= Fee A
|   B

Fee  ::= B Fee2

Fee2 ::= A Fee2
|   “”

A and B can be any sequence of non-terminals and terminals



Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
|   B

Fee  ::= B Fee2

Fee2 ::= A Fee2
|    “”

1: Expr ::= Expr Op Unit
2:      |   Unit
3: Unit ::= ‘(‘ Expr ‘)’
4:       |    ID
5: Op   ::= ‘+’
6:       |   ‘*’



Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
|   B

Fee  ::= B Fee2

Fee2 ::= A Fee2
|    “”

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

1: Expr ::= Expr Op Unit
2:      |   Unit
3: Unit ::= ‘(‘ Expr ‘)’
4:       |    ID
5: Op   ::= ‘+’
6:       |   ‘*’

A = Op Unit
B = Unit



Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
|   B

Fee  ::= B Fee2

Fee2 ::= A Fee2
|    “”

1: Expr ::= Expr ‘+’ ID
2:      |   ID



Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
|   B

Fee  ::= B Fee2

Fee2 ::= A Fee2
|    “”

1: Expr ::= Expr ‘+’ ID
2:      |   ID

A = ‘+ ID
B = ID

1: Expr ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2
3:         |   ””



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Expanded Rule Sentential Form

start Expr

Variable Value

focus

to_match

s.istring

stack

1: Expr ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2
3:         |   ””

Can we match: “a”?



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Expanded Rule Sentential Form

start Expr

1 ID Expr2

Variable Value

focus Expr2

to_match None

s.istring “”

stack None

1: Expr  ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2
3:         |   ””

Can we match: “a”?

How to handle
this case?



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Expanded Rule Sentential Form

start Expr

1 ID Expr2

How to handle
this case?

Variable Value

focus Expr2

to_match None

s.istring “”

stack None

1: Expr  ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2
3:        |   ””

Can we match: “a”?



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Expanded Rule Sentential Form

start Expr

1 ID Expr2

3 ID

How to handle
this case?

Variable Value

focus Expr2

to_match None

s.istring “”

stack None

1: Expr  ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2
3:        |   ””

Can we match: “a”?



How about indirect left recursion?

direct left recursion
indirect left recursion

Top down parsing cannot handle either

1: Expr ::= Expr Op Unit
2:      |   Unit
3: Unit ::= ‘(‘ Expr ‘)’
4:       |    ID
5: Op   ::= ‘+’
6:       |   ‘*’

1: Expr_base ::= Unit
2:      |   Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |    ID
6: Op   ::= ‘+’
7:           |   ‘*’



How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2:      |   Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |    ID
6: Op   ::= ‘+’
7:           |   ‘*’

Expr_base →!"# Expr_op →!"# Expr_base



How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2:      |   Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |    ID
6: Op   ::= ‘+’
7:           |   ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

Substitute indirect non-terminal closer to initial non-terminal



How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2:      |   Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |  ID
6: Op   ::= ‘+’
7:           |   ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

Substitute indirect non-terminal closer to initial non-terminal

1: Expr_base ::= Unit
2:      |   Expr_base Op Unit
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |  ID
6: Op   ::= ‘+’
7:           |   ‘*’

What to do with production rule 3?



How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2:      |   Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |  ID
6: Op   ::= ‘+’
7:           |   ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

Substitute indirect non-terminal closer to initial non-terminal

1: Expr_base ::= Unit
2:      |   Expr_base Op Unit
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5:            |  ID
6: Op   ::= ‘+’
7:           |   ‘*’

What to do with production rule 3?
It may need to stay if another production rule references it!



What else do we need to do

pick next rule (A ::= B1,B2,B3...BN);

We cannot have infinite recursion.

What is next?



What else do we need to do

pick next rule (A ::= B1,B2,B3...BN);

We cannot have infinite recursion.

What is next?

We need to deal with incorrect choices



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Expanded Rule Sentential Form

start Expr

Variable Value

focus Expr2

to_match None

s.istring “”

stack None

1: Expr  ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2

|   ””

Can we match: “a”?



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Expanded Rule Sentential Form

start Expr

1 ID Expr2

2 ID ‘+’ Expr2

Variable Value

focus ‘+’

to_match None

s.istring “”

stack Expr2

1: Expr  ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2

|   ””

Can we match: “a”?



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

cache_state();
pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

else if (we have a cached state)
backtrack();

else
parser_error()

Expanded Rule Sentential Form

start Expr

1 ID Expr2

2 ID ’+’ Expr2

1: Expr  ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2

|   ””

Can we match: “a”?

Keep track of what 
choices we’ve done



Backtracking gets complicated...

• Do we need to backtrack?
• In the general case, yes
• In many useful cases, no



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
if B1 == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Expanded Rule Sentential Form

start Expr

1 ID Expr2

Variable Value

focus Expr2

to_match None

s.istring “”

stack None

1: Expr  ::= ID Expr2
2: Expr2 ::= ‘+’ Expr2

|   ””

Can we match: “a”?

Could we make a smarter choice here?



The First Set
For each production choice, find the set
of tokens that each production can start with

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’



The First Set
For each production choice, find the set
of tokens that each production can start with

First sets:
1: {}
2: {}
3: {}
4: {}
5: {}
6: {}
7: {}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’



The First Set
For each production choice, find the set
of tokens that each production can start with

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

We can use first sets to decide which rule to pick!



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

Variable Value

focus

to_match

s.istring

stack

We simply use to_match and compare it
to the first sets for each choice

For example, OP, and UNIT

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’



The First Set
Rules with “” in their First set need special attention

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

Follow sets:
1: NA
2: NA
3: {}
4: NA
5: NA
6: NA
7: NA



The First Set

We need to find the tokens that any string
that follows the production can start with.

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

Follow sets:
1: NA
2: NA
3: {}
4: NA
5: NA
6: NA
7: NA

Rules with “” in their First set need special attention



The First Set

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

Follow sets:
1: NA
2: NA
3: {None, ’)’}
4: NA
5: NA
6: NA
7: NA

We need to find the tokens that any string
that follows the production can start with.

Rules with “” in their First set need special attention



The First Set

First sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {“”}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

Follow sets:
1: NA
2: NA
3: {None, ’)’}
4: NA
5: NA
6: NA
7: NA

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}



The First Set

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!



The First Set

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!



The First Set

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

The First+ set is the combination of First and Follow sets

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

These grammars are called LL(1)
• L - scanning the input left to right
• L - left derivation
• 1 - how many look ahead symbols

They are also called predictive grammars 

Many programming languages are LL(1)



Sometimes the grammar needs to be 
refactored

1: Factor ::= ID
2:        |   ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...



Sometimes the grammar needs to be 
refactored

1: Factor ::= ID
2:        |   ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {}
2: {}
3: {}
...



Sometimes the grammar needs to be 
refactored

1: Factor ::= ID
2:        |   ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

We cannot select the next
rule based on a single look ahead
token!



Sometimes the grammar needs to be 
refactored

1: Factor ::= ID
2:        |   ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor      ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: |   ‘(‘ Args ‘)’
4: | “”

We can refactor

First
1: {}
2: {}
3: {}
4: {}



Sometimes the grammar needs to be 
refactored

1: Factor ::= ID
2:        |   ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor      ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: |   ‘(‘ Args ‘)’
4: | “”

We can refactor

First
1: {ID}
2: {‘[‘}
3: {‘(‘}
4: {“”} // We will need to compute the follow set



Sometimes the grammar needs to be 
refactored

1: Factor ::= ID
2:        |   ID ‘[‘ Args ‘]’
3: | ID ‘(‘ Args ‘)’
...

First
1: {ID}
2: {ID}
3: {ID}
...

1: Factor      ::= ID Option_args
2: Option_args ::= ‘[‘ Args ‘]’
3: |   ‘(‘ Args ‘)’
4: | “”

We can refactor

It is not always possible to 
rewrite grammars into a
predictive form, but many
programming languages can be.

First
1: {ID}
2: {‘[‘}
3: {‘(‘}
4: {“”} // We will need to compute the follow set



We now have a full top-down parsing 
algorithm!



root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None) 
Accept

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3:       | “”
4: Unit ::= ‘(‘ Expr ‘)’
5:       |    ID
6: Op   ::= ‘+’
7:       |   ‘*’

First+ sets:
1: {‘(‘, ID}
2: {‘+’, ‘*’}
3: {None, ’)’}
4: {‘(‘}
5: {ID}
6: {‘+’}
7: {‘*’}

To pick the next rule, compare to_match with the possible first+ sets. 
Pick the rule whose first+ set contains to_match.

If there is no such rule then it is a parsing error.

input grammar,
refactored to remove
left recursion

First+ sets for each
production rule



Quiz



Next time: recursive descent parser

• Simpler implementation of a top down parser


