CSE110A: Compilers

April 18, 2022

Topics:

e Top down parsing
* Dealing with left recursion
* Lookahead sets

int main() {

printf(“*);
return 0;

N

Announcements

* HW 1 is due today

* No guaranteed help after business hours (e.g. after class at 5 PM)

* HW 2 is scheduled for release today by midnight
* you have two weeks to do it.
* due on May 2 at midnight
e you have what you need for part 1 today
e you should have what you need for part 2 on Wednesday
* you should have what you need for part 3 on Friday

* Plenty of time for help for HW 2!

Announcements

* Homework clarification: token actions
* You can use lists, functions, variables etc in tokens.py as token actions
 These components get bound to the tokens array

* You should only use the token array in your scanners, and you should be
prepared to accept as input any token arrays

* Your token array should be an array of tuples:

(TOKEN ID string,
TOKEN REGEX string,
TOKEN_ ACTION : lexeme — lexeme)

Unfortunately Monday'’s lecture put us behind
and we weren’t able to get through all the
material we needed for the quiz again

To make up for it, | will make Friday’s quiz due
on Wednesday so that you can answer the
extra questions with enough background

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

() operator associativity not being specified
(7] incorrect parenthesis matching
(7] operator precedence not being specified

(] operator commutativity not being specified

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

O
O
O
O

operator associativity not being specified

incorrect parenthesis matching
operator precedence not being specified

operator commutativity not being specified

What about for a different operator?

Evaluates lﬂpU.t e 2-3-4
(2-3)-4 expr Evaluates
T o 3
expr <MINUS> expr /I\
/l\ expr <MINUS> expr
expr <|\/||NUS> expr term /I\
‘ ’ term expr <MINUS> expr
term term ’ ’
\ \ factor term term
factor factor \ \
factor
‘ ‘ <NU|V|, 2> ‘ ‘
<NUM, 2> <NUM, 3>
<NUM, 3> <NUM, 4>

Which one is right?

Associativity for a single operator

IiiiiiiiilluiiiiilllllIiiiiiiiﬁiﬁilllllll

expr

¢ expr MINUS NUM

| NUM

input: 2-3-4

expr
expr <MINUS> expr
<NUM, 2> expr <MINUS> expr
<NUM, 3> <NUM, 4>

No longer allowed

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

() operator associativity not being specified

() incorrect parenthesis matching

(7] operator precedence not being specified

(] operator commutativity not being specified

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

() operator associativity not being specified

(] [incorrect parenthesis matching

(7] operator precedence not being specified

(] operator commutativity not being specified

Not really a cause of ambiguous grammars

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

O
O
O
O

operator associativity not being specified

incorrect parenthesis matching

operator precedence not being specified

operator commutativity not being specified

Ambiguous grammars

einput: 1 + 5 * 6

expr ::= NUM
| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN

Evaluations are different!

expr
expr <TIMES> expr
expr <PLUS> expr <NUM, 6>

| |
<NUM, 1> <NUM, 5>

expr
expr <PLUS> expr
<NUM, 1> expr <TIMES> expr
| |
<NUM, 5> <NUM, 6>

Avoiding Ambiguity -
increases going down

* new production rules

el
* One non-terminal for each level of

expr expr PLUS expr
precedence expr MINUS expr
* lowest precedence at the top | term
. * term ¢ term TIMES term
* highest precedence at the bottom | pow
A pow : pow © pow
| factor
() factor : LPAREN expr RPAREN

| NUM

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

U
U
U
U

operator associativity not being specified
incorrect parenthesis matching

operator precedence not being specified

operator commutativity not being specified

What is commutativity?

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

() operator associativity not being specified
(7] incorrect parenthesis matching

(7] operator precedence not being specified

()|operator commutativity not being specified

What is commutativity? a + ==

b + a

Qu

1Z

Which of the following can be sources of ambiguity in grammars?

() operator associativity not being specified
(7] incorrect parenthesis matching

(] operator precedence not being specified

()|operator commutativity not being specified

What is commutativity? a + b ==

b + a

Parsing doesn’t really consider
commutativity, but optimizations will

Quiz

We’re doing this a little out of order

It is only possible to write a top-down parser if you can determine exactly which production rule to
apply at each step.

O True

(O False

while

root = start symbol;
focus = root;

push (None) ;
to match =

Currently we assume this
is magic and picks
the right rule every time

s.token();

(true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);

push(BN... B3, B2);
focus = Bl
else if (focus == to match)

to match = s.token()
focus = pop()

else if (to match == None and focus == None)
Accept
Variable Value
focus Expr
to_match ‘a’
s.istring “+b) *c”
stack Op Unit) Op Unit None

Expanded Rule

l: Expr ::= Expr Op Unit
2: Unit

3: Unit ::= ‘(' Expr ')’
4: ID

5: Op = 4

6: 1k 1

Can we derive the string (a+b) *c

Sentential Form

start Expr

1 Expr Op Unit

2 Unit Op Unit

3 (Expr) Op Unit

1 (Expr Op Unit) Op Unit
2 (Unit Op Unit) Op Unit

Quiz

We’re doing this a little out of order

It is only possible to write a top-down parser if you can determine exactly which production rule to
apply at each step.

O True

(O False

Answer:

* true with what we’ve seen so far

* true if you want an efficient parser
* false in general

Quiz

We will answer these ones today in class

To prepare a grammar for a top-down parser, you must ensure that there is no recursion, except in
the right-most element of any production rule.

O True

O False

In many cases, a top-down parser requires the grammar to be re-written. Write a few sentences
about why this might be an issue when developing a compiler and how the issues might be

addressed.

Review

* Let’'s do a few more examples of top down parsing

root = start symbol; 1
focus = root; 2

: Expr ::= Expr ‘+'’ ID

: ID
push(None) ; Currently we assume this
to match = s.token(); is magic and picks
while (true): the right rule every time
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2); . .
focus = Bl Can we derive the string a
else if (focus == to match)
to_match = s.token() Expanded Rule Sentential Form
focus = pop()
start Expr
else if (to match == None and focus == None)
Accept
Variable Value
focus Expr
to_match
s.istring

stack

One more example

root = start symbol; l: Expr ::= Expr ‘+’ ID
focus = root; 2

push(None) ; Currently we assume this
to match = s.token(); is magic and picks

the right rule every time

while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);

focus = Bl Can we derive the string a+b

else if (focus == to match)
to_match = s.token() Expanded Rule Sentential Form
focus = pop()
start Expr
else if (to match == None and focus == None)
Accept
Variable Value

focus Expr

New material

* We are going to zoom in on:

pick next rule (A ::= B1l,B2,B3...BN);

So far this rule has been
magic. Let’s start by
turning that magic off

New material

* We are going to zoom in on:

pick next rule (A ::= B1l,B2,B3...BN);

So far this rule has been
magic. Let’s start
turning that magic off

what could the most demonic
choice do...

root = start symbol; 1
focus = root; 2
push (None) ;

to_match = s.token();

: Expr ::= Expr ‘+'’ ID

What could a demonic
choice do?
while (true):

if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);

push(BN... B3, B2); . .
focus = Bl Can we derive the string a

else if (focus == to match)
to match = s.token()

Expanded Rule Sentential Form
focus = pop()

start Expr
else if (to match == None and focus == None)
Accept

Variable Value
focus

to_match

s.istring

stack

root = start symbol; 1

: Expr ::= Expr ‘+'’ ID
focus = root;

push (None) ; 2: 1D
to match = s.token(); tht could a demonic
choice do?
while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2); . .
focus = Bl Can we derive the string a
else if (focus == to match)
to_match = s.token() Expanded Rule Sentential Form
focus = pop()
start Expr
else if (to match == None and focus == None) ()
— 1 Expr +" ID
Accept
1 Expr ‘+" ID ‘+’ ID
I+I I+I I+I
Variable Value 1 Expr + 1D D D
1
focus
1
to_match
L 1
s.istring
stack

Infinite recursion!

Top down parsing does not handle left
recursion

l: EXpr ::= Expr Op Unit
2: Unit

3: Unit ::= ‘(' Expr ‘')’
4: ID

5: Op = 4

6: Lxr

direct left recursion

Top down parsing does not handle left
recursion

o U1 > W IN

direct left recursion

: Expr ::= Expr Op Unit :
. l: ExXpr base ::= Unit
Unit 5 —
: Unit ::= ‘(' Expr ‘)’) | BXpr_op :
ID 3: ExXpr_ op = Expr base Op Unit
. Op coz g 4: Unit := ‘(' EXpr_base ‘)
oy 5: | ID
6: Op = Y+
7 | Lkt

indirect left recursion

Top down parsing cannot handle either

Top down parsing does not handle left
recursion

Luckily
* In general, any CFG can be re-written without left recursion

Eliminating direct left recursion

What does this grammar describe?

Eliminating direct left recursion

The grammar can be rewritten as

Fee ::= Fee “a” Fee ::= “Db" Fee2
| ub"
Fee2 ::= “a" Fee2

| “n

Eliminating direct left recursion

A and B can be any sequence of non-terminals and terminals

Fee ::= Fee A Fee B Fee?2

B

A Fee?2

| un

Fee?2

Eliminating direct left recursion

l: EXxpr ::= Expr Op Unit
2: Unit

3: Unit ::= ‘(' Expr ')’
4: ID

5: Op = 4

6 Lk 1

Lets do this one as an example:

Fee t::= B Fee?2
Fee ::= Fee A
B ' Fee2 ::= A Fee?2

Eliminating direct left recursion

¢ Un

: Op

o U WD

: EXpr

it

::= Expr Op Unit

Unit
t:= (' Expr ‘)’
ID
HEE R

1 %7

Lets do this one as an example:

<N o Ol WD R

: EXpr
: Expr2

: Unit

: Op

Fee

Fee?2

A = Op Unit
B = Unit

::= Unit Expr2
::= Op Unit Expr2

“n

t:= ‘(' Expr ')’

ID

te= IS

1%

Eliminating direct left recursion

l: Expr ::= Expr ‘+’' ID
2: | 1D

Lets do this one as an example:

Fee B Fee?2

Fee ::= Fee A
B ' Fee2 ::= A Fee?2

| “un

Eliminating direct left recursion A=
l: Expr ::= Expr ‘+’' ID l: Expr ::= ID Expr2
2: | ID 2: Expr2 ::= ‘+' Expr2

3: | L

Lets do this one as an example:

Fee t::= B Fee?2
Fee ::= Fee A
B ' Fee2 ::= A Fee?2

root = start symbol;

focus = root; l: Expr ::= ID Expr2
push (None) ; 2: Expr2 ::= ‘+' ExXpr2
to match = s.token(); 3: | "nn

while (true):

if (focus is a nonterminal)

pick next rule (A ::= B1l,B2,B3...BN);
push(BN... B3, B2); Can we match: “a”?

focus = Bl

else if (focus == to match)
to match = s.token()

focus = pop() start Expr

Expanded Rule Sentential Form

else if (to match == None and focus == None)
Accept

Variable Value
focus

to_match

s.istring

stack

root = start symbol;
focus = root;

push (None) ;

to match = s.token();

while (true):

How to handle 1: Expr ::= ID Expr2
this case? 2: ExXpr2 ::= '+’ EXpr2
3 . | "

if (focus is a nonterminal)

pick next rule (A ::

push(BN... B3, B2);

focus = Bl

else if (focus == to match)

to match = s.token()

focus = pop()

else if (to match ==

Accept

Variable
focus
to_match
s.istring

stack

B1,B2,B3...BN);
Can we match: “a”?

Expanded Rule Sentential Form
start Expr
None and focus == None) 1 ID Expr2
Value
Expr2
None
None

root = start symbol;

focus = root; l: Expr ::= ID Expr2
push (None) ; How to handle 2: Expr2 ::= ‘+' EXpr2
to match = s.token(); this case? 3: "

while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
if Bl == “"”: focus=pop(); continue; Can we match: “@”?
push(BN... B3, B2);
focus = Bl

else if (focus == to match) Expanded Rule Sentential Form
to match = s.token() start Expr
focus = pop()
1 ID Expr2
else if (to match == None and focus == None)
Accept
Variable Value
focus Expr2
to_match None
s.istring “

stack None

root = start symbol;

focus = root; l: Expr ::= ID Expr2
push (None) ; How to handle 2: Expr2 ::= ‘+' EXpr2
to match = s.token(); this case? 3: "

while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
if Bl == “"”: focus=pop(); continue; Can we match: “@”?
push(BN... B3, B2);
focus = Bl

else if (focus == to match) Expanded Rule Sentential Form
to match = s.token() start Expr
focus = pop()
1 ID Expr2
else if (to_match == None and focus == None) 3 ID
Accept
Variable Value
focus Expr2
to_match None
s.istring “

stack None

o U1 > W IN

How about indirect left recursion?

direct left recursion

: Expr ::= Expr Op Unit :
. l: ExXpr base ::= Unit
Unit 5 —
: Unit ::= ‘(' Expr ‘)’) | BXpr_op :
ID 3: ExXpr_ op ::= EXpr base Op Unit
. Op coz g 4: Unit ::= ‘(' ExXpr base ‘)
oy 5: | ID
6: Op = Y+
7 | Lkt

indirect left recursion

Top down parsing cannot handle either

How about indirect left recursion?

: Expr base ::= Unit

| EXpr_op

: Expr op ::= Expr base Op Unit
: Unit ::= ‘(' Expr_base ')’
| ID

: Op se= 4

| 1 %7

o) W © 2 BT~ U TR O B
oo oo oo

Identify indirect left left recursion

Expr_base — < Expr_op — s Expr_base

How about indirect left recursion?

l: Expr base ::= Unit

2: | EXpr_op

3: ExXpr_op ::= Expr base Op Unit
4: Unit ::= ‘(' Expr_base ')’
5: | ID

6: Op 2= Y+

7 | Lkt

Identify indirect left left recursion

Expr_base — < Expr_op — s Expr_base

Substitute indirect non-terminal closer to initial non-terminal

How about indirect left recursion?

l: Expr base ::= Unit 1: Expr base ::= Unit

2: | Expr_op _ 2: | Expr base Op Unit
3: Expr_op ::= Expr base Op Unit 3: Expr op ::= Expr base Op Unit
4: Unit ::= ‘(' Expr_base ‘)’ 4: Unit si= 4 (! Expr base ‘)’
5: | ID 5: | ID -

6: Op 2= A 6: Op 2= 4

7z | T 7 | tE!

What to do with production rule 3?
Identify indirect left left recursion P

Expr_base — < Expr_op — s Expr_base

Substitute indirect non-terminal closer to initial non-terminal

How about indirect left recursion?

l: Expr_base ::= Unit 1: Expr base ::= Unit

2: EXpr_op 2 Expr base Op Unit
3: Expr op ::= Expr base Op Unit 3: Expr op ::= Expr base Op Unit
4: Unit ::= ‘(' Expr base ‘)’ 4: Unit si= 4 (¢ Expr base ‘)’
5 | ID 5. | ID -

6: Op = I+ 6: Op ca= 147

7: L& 1 7. 151

What to do with production rule 3?

Identify indirect left left recursion It may need to stay if another production rule references it!

Expr_base — < Expr_op — s Expr_base

Substitute indirect non-terminal closer to initial non-terminal

What else do we need to do

pick next rule (A ::= B1l,B2,B3...BN);

We cannot have infinite recursion.

What is next?

What else do we need to do

pick next rule (A ::= B1l,B2,B3...BN);

We cannot have infinite recursion.
What is next?

We need to deal with incorrect choices

root = start symbol;
focus = root;

push (None) ; 2
to match = s.token();

l: Expr
Expr2

ID ExXpr2
'+’ ExXpr2

nun

while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1l,B2,B3...BN);
if Bl == “”: focus=pop(); continue; Can we match: “a”?
push(BN... B3, B2);
focus = Bl
else if (focus == to match) Expanded Rule Sentential Form
to_match = s.token() start Expr
focus = pop()

else if (to match == None and focus == None)
Accept

Variable Value

focus Expr2

to_match None

s.istring “

stack None

root = start symbol;
focus = root;

push (None) ;

to match = s.token();

while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
if Bl == “": focus=pop(); continue;
push(BN... B3, B2);
focus = Bl

else if (focus == to match)
to match = s.token()
focus = pop()

else if (to match == None and focus == None)
Accept

Variable Value

focus +

to_match None

s.istring “

stack Expr2

Expanded Rule
start

1

2

l: Expr
2: Expr2 :

ID ExXpr2
'+’ ExXpr2

nun

Can we match: “a@”?

Sentential Form
Expr

ID Expr2

ID ‘+’ Expr2

while (true):

root = start symbol;
focus = root;

push (None) ;

to match = s.token();

Keep track of what

if (focus is a nonterminal)
cache state();
pick next rule (A ::= B1,B2,B3...BN);
if Bl == “": focus=pop(); continue;
push(BN... B3, B2);
focus = Bl

else if (focus == to match)
to match = s.token()
focus = pop()

else if (to match == None and focus == None)
Accept

else if (we have a cached state)
backtrack();

else
parser error()

choices we’ve done

Expanded Rule
start

1

2

l: Expr
2: Expr2 :

ID ExXpr2
'+’ ExXpr2

nun

Can we match: “a@”?

Sentential Form
Expr

ID Expr2

ID '+" Expr2

Backtracking gets complicated...

* Do we need to backtrack?
* In the general case, yes
* In many useful cases, no

root = start symbol;
focus = root;

push (None) ;

to match = s.token();

l: Expr
2: ExXpr2

ID ExXpr2
'+’ ExXpr2

nun

Could we make a smarter choice here?

while (true):
if (focus is a nonterminal)
pick next rule (A ::= B1,B2,B3...BN);
if Bl == “": focus=pop(); continue;
push(BN... B3, B2);
focus = Bl

else if (focus == to match)
to match = s.token()
focus = pop()

else if (to match == None and focus == None)
Accept

Variable Value

focus Expr2

to_match None

s.istring “

stack None

Can we match: “a@”?

Expanded Rule Sentential Form
start Expr
1 ID Expr2

The First Set

For each production choice, find the set
of tokens that each production can start with

= Unit Expr2
= Op Unit Expr2

4 () EXpr 4) 4
ID
Op 2= 4!

1 %7

Nouds W
C
o)
-
(_'.
I

The First Set

For each production choice, find the set
of tokens that each production can start with

First sets:

l: Expr := Unit Expr?2 1: {}
2: Expr2 ::= Op Unit Expr?2 2: {}
3: “r 3: {}
4: Unit := ‘(' Expr ')’ 4: {}
5¢ 1D 5: {}
6: Op se= 4+ 6: {}
7: Pk 7: {}

The First Set

For each production choice, find the set
of tokens that each production can start with

First sets:

l: Expr := Unit Expr2 l: {*(', ID}
2: Expr2 ::= Op Unit Expr?2 2: {'+", ‘*'}
3: “n 3: {}

4: Unit :t= ‘(' Expr ')’ 4: {'("'}

5: ID 5: {ID}

6: Op = 4! 6: {'+'}

7: Lkt 7: {'*"}

We can use first sets to decide which rule to pick!

root = start symbol;

. . l: EXpr ::= Unit Expr?2
ocus = root; . e .
push (None) ; :23 : Expr2 :: - "Op Unit Expr2
to match = s.token(); * _
4: Unit ::= ‘(' Expr ')’
while (true): 5: ID
if (focus is a nonterminal) 6: Op 1= 47
pick next rule (A ::= B1,B2,B3...BN); 7 e 1%
push(BN... B3, B2);
focus = Bl
First sets:
else if (focus == to match) 1: {‘(*, ID}
to match = s.token() 2: {147, 1%}
focus = pop() 3: {}
else if (to match == None and focus == None) d: {7 (")
A - 5: {ID}
ccept
6 . { 1 + ’ }
. 1 g7
Variable Value 7: A }
focus
to_match We simply use to_match and compare it
B — to the first sets for each choice

stack For example, OP, and UNIT

N OO0 b WDN R

The First Set

Rules with “” in their First set need special attention

First sets: Follow sets:

Expr ::= Unit ExXpr2 1: {‘(*, ID} 1: NA
Expr2 ::= Op Unit Expr2 2: {47, '*'} 2: NA
3: {7} 3: {)

Unit ::= ‘(‘ Expr ')’ 4: {'('} 4: NA
ID 5: {ID} 5: NA

Op 2= 4! 6: {'+'} 6: NA
fxt 7: {'*'} 7: NA

N OO0 b WDN R

The First Set

Expr
Expr2

Unit

::= Unit Expr2
::= Op Unit Expr2

“n

t:= ‘(' Expr ')’

ID

s o= 147

1 %7

Rules with “” in their First set need special attention

First sets: Follow sets:
l1: {*(*, ID} l: NA
2: {'+7, +*r} 2: NA
3: {“"} 3: {}
4: {'("} 4: NA
5: {ID} 5: NA
6: {'+'} 6: NA
7: {'*"} 7: NA

We need to find the tokens that any string
that follows the production can start with.

N OO0 b WDN R

The First Set

Expr
Expr2

Unit

::= Unit Expr2
::= Op Unit Expr2

“n

t:= ‘(' Expr ')’

ID

s o= 147

1 %7

Rules with “” in their First set need special attention

First sets: Follow sets:
l1: {’(', ID} l: NA

2: {'+7, +*r} 2: NA

3: {“"} 3: {None, ')’}
4: {'("} 4: NA

5: {ID} 5: NA

6: {'+'} 6: NA

7: {'*"} 7: NA

We need to find the tokens that any string
that follows the production can start with.

N OO0 b WDN R

The First Set

Expr
Expr2

Unit

::= Unit Expr2
::= Op Unit Expr2

“n

t:= ‘(' Expr ')’

ID

s o= 147

1 %7

The First+ set is the combination of First and Follow sets

First sets:

<NSNoy Ok W

{(,
{"+,
{llll}

{"("}
{ID}

{"+"}
{**"}

ID}
l*l}

1
2

w

~N O O W

Follow sets:

NA
NA
{None, ")’}
NA
NA
NA
NA

First+ sets:

<N oy 0k WIN

{
{+,
{None,
{* ('}
{ID}

{"+}
{**"}

ID}
l*l}
)"}

N OO0 b WDN R

The First Set

Expr
Expr2

Unit

::= Unit Expr2
::= Op Unit Expr2

The First+ set is the combination of First and Follow sets

First+ sets:
{‘(*, ID}
{I_I_I, l*l}
{None, ')’}

“n

N oy O W N R

z3= ‘(' Expr ‘)’ {("}
ID {ID}
e 0= I+I {l_l_l}
1 %7 {l*l}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

N OO0 b WDN R

The First Set

Expr
Expr2

Unit

The First+ set is the combination of First and Follow sets

First+ sets:

::= Unit Expr2 1l: {‘(’', ID}
::= Op Unit Expr2 2: {'+'", *'*'}
“ 3: {None, ')’}
ti= ‘(' Expr ')’ 4: {"("}
ID 5: {ID}
si= 4 6: {'+'}
72 {'%}

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

N OO0 b WDN R

The First Set

The First+ set is the combination of First and Follow sets

First+ sets:
Expr ::= Unit Expr?2

Expr2 ::= Op Unit Expr2 2: {'+7, **'} These grammars are called LL(1)
" 3: {None, ')’} . t-ﬁﬁgmgprﬂnmnmﬂtoﬁgn
. . - left derivation
s o= 1 R V] ’ . 1 1
unit (xpr ") 42 {77} 1-how many look ahead symbols
ID 5: {ID}
Op 2e= 6: {'+"} They are also called predictive grammars
1 %7 7 : { 1 %7 }

Many programming languages are LL(1)

For each non-terminal: if every production has a disjoint First+ set then
we do not need any backtracking!

Sometimes the grammar needs to be
refactored

l: Factor ::= ID
2 | ID ‘[‘ Args ‘]’
3: | ID ‘(' Args ‘)’

Sometimes the grammar needs to be
refactored

First
l: Factor ::= ID 1: {}
2 | ID ‘[‘ Args ‘]’ 2: {}

3: | ID ‘(‘ Args ‘)’ 3: {}

Sometimes the grammar needs to be
refactored

First
l: Factor ::= ID l1: {ID}
2 | ID ‘[‘ Args ‘]’ 2: {ID}
3: | ID ‘(‘ Args ‘)’ 3: {ID}

We cannot select the next
rule based on a single look ahead
token!

Sometimes the grammar needs to be
refactored

First

l: Factor ::= ID l: {ID}
2 | ID ‘[‘ Args ‘]’ 2: {ID}
3: | ID ‘(‘ Args ‘)’ 3: {ID}
We can refactor

First
l: Factor = ID Option args 1: {}
2: Option args ::= ‘[’ Args ‘]’ 2: {}
3: | ‘(* Args ')’ 3: {}
4: | “n 4: {}

Sometimes the grammar needs to be
refactored

First
l: Factor ::= ID l: {ID}
2 | ID ‘[‘ Args ‘]’ 2: {ID}
3: | ID ‘(‘ Args ‘)’ 3: {ID}
We can refactor

First

l: Factor = ID Option args 1: {ID}
2: Option args ::= ‘[‘’ Args ‘]’ 2: {'["}
3: | ‘(' Args ')’ 3: {'("}
4 | “ 4: {“"} // We will need to compute the follow set

Sometimes the grammar needs to be

refactored

l: Factor ::= ID
2: |
3: |

We can refactor

: Factor

: Option args ::
|

|

= W N -

ID l[l
ID ‘(' Args ')’

Args ‘']’

= ID Option args

l[l Args l]l
l(l Args l)l

“n

First

1: {ID}
2: {ID}
3: {ID}

First
l: {ID}
2: {'["}
3: {"("}
4: {""}

It is not always possible to
rewrite grammars into a
predictive form, but many
programming languages can be.

// We will need to compute the follow set

We now have a full top-down parsing
algorithm!

root = start symbol; First+ sets:
focus = root; l: {‘(’, ID} l: EXpr ::= Unit Expr?2
push(None) ; 2: {'+", '*x'} 2: Expr2 ::= Op Unit Expr2
tO_matCh = S .token() ;s 3. {None, ’) r } 3 un
4: {'(* 4: Unit ::= ‘(' Expr ')’
while (true): 5. Elé}} 5 iD P)
if (focus is a nonterminal) 6: Py 6: o Col i
pick next rule (A ::= B1,B2,B3...BN); : {,*,} : P T
push(BN... B3, B2); 7: {'*"} 7: *
focus = Bl
. First+ sets for each input grammat,
else if (focus == to_match) production rule refactored to remove
to match = s.token() .
— left recursion
focus = pop()
else if (to match == None and focus == None)

Accept

To pick the next rule, compare to _match with the possible first+ sets.
Pick the rule whose £irst+ set contains to _match.

If there is no such rule then it is a parsing error.

Quiz

To prepare a grammar for a top-down parser, you must ensure that there is no recursion, except in
the right-most element of any production rule.

O True

O False

In many cases, a top-down parser requires the grammar to be re-written. Write a few sentences
about why this might be an issue when developing a compiler and how the issues might be

addressed.

Next time: recursive descent parser

e Simpler implementation of a top down parser

