
CSE110A: Compilers
April 13, 2022

Topics:
• Syntactic Analysis continued
• Precedence and associativity part 2
• Top down parsing

• Oracle parser
• Rewriting to avoid left recursion

..

.. ..

....

int main() {
printf(““);
return 0;
}

Announcements

• HW 1 is due on Monday at midnight

• For help
• Ask on Piazza: No guaranteed help over the weekend or off business hours
• Yanwen has office hours on Monday 1-2, but I hope you will not save it that

late!

• Test case post on Piazza
• It is best to share the test cases there so that teaching staff can look over

them.

• Plan on HW2 assigned on Monday (due 2 weeks later)

Announcements

• For part 4:
• You must use the same tokens that you created in part 2 and used in part 3
• You must build the RE programmatically
• Keep track of the token actions in a separate data structure

Quiz

Quiz

Quiz

xxxxxxxxyHow about this one?

RULE Sentential Form

start A

1
2

Quiz

xxxxxxxxyHow about this one?

1
2

Applying either rule
gives us a sentential
form that won’t create
the string

RULE Sentential Form

start A

Quiz

xyyyyyyyyHow about this one?

1
2

RULE Sentential Form

start A

Quiz

xyyyyyyyyHow about this one?

1
2

Similar reason:
strings that are
longer than 1 character
cannot end in yRULE Sentential Form

start A

Quiz

yxxxxxxxxHow about this one?

RULE Sentential Form

start A

1
2

Quiz

yxxxxxxxxHow about this one?

RULE Sentential Form

start A

1 A x

1 A x x

2 y xxxxxxxx

1
2

9 more rows, then eventually

Quiz

yyyyyyyyxHow about this one?

RULE Sentential Form

start A

1
2

Quiz

yyyyyyyyxHow about this one?

RULE Sentential Form

start A

1
2

We can only produce
1 y, so we cannot
derive this string

Quiz

yyyyyyyyxHow about this one?

RULE Sentential Form

start A

1
2

What if we changed the rules?? Does this work?

A

Quiz

yyyyyyyyxHow about this one?

RULE Sentential Form

start A

1
2

What if we changed the rules?? Does this work?

A

We need a terminating string:
A -> “”

Quiz

Quiz

Let’s look at some examples.

Let’s assume that E is an ”expr”
and x is a number

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

Both parse trees are valid,
this grammar is ambiguous

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about this one?

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about this one?
Doesn’t allow an
expression on the RHS.
This parse tree is not
allowed

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about this one?

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about this one? Doesn’t allow an
expression on the LHS.
This parse tree is not
allowed

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about this one?

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about this one?
Cannot produce either
parse tree!

Quiz

Post order traversal

What is the post order traversal
of this tree?

Post order traversal

5

3

1

4

2

What is the post order traversal
of this tree?

Post order traversal

5

3

1

4

2

What is the post order traversal
of this tree?

operators that are lower
in the parse tree get evaluated earlier

operators that are higher
in the parse tree get evaluated later

Evaluating a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Evaluating a parse tree

expr: 31

expr: 1 <PLUS> expr

<NUM, 1>

<TIMES>term: 5 term: 6

term: 1

factor: 1

input: 1+5*6

term: 30

<NUM, 5>

factor:5

<NUM, 6>

factor: 6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Evaluating a parse tree

expr: 31

expr: 1 <PLUS> expr

<NUM, 1>

<TIMES>term: 5 term: 6

term: 1

factor: 1

input: 1+5*6

term: 30

<NUM, 5>

factor:5

<NUM, 6>

factor: 6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

lower in the
parse tree

Avoiding Ambiguity

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Precedence
increases going down

• new production rules
• One non-terminal for each level of

precedence
• lowest precedence at the top
• highest precedence at the bottom

• How would we add power? ^

Quiz

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr ::= NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr ::= NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Evaluations are different!

Review

• I think the quiz did a good job covering last lectures material

New material

• Continue our discussion on associativity

Let’s make some more parse trees

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LP expr RP
| NUM

input: 2+3+4

Let’s make some more parse trees
input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LP expr RP
| NUM

This is ambiguous, is it an issue?

input: 2+3+4
expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about for a different operator?
input: 2-3-4

What about for a different operator?
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <MINUS> expr

<MINUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

Which one is right?

What about for a different operator?
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <MINUS> expr

<MINUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

Which one is right?

Evaluates
(2-3) - 4 Evaluates

2 - (3 - 4)

Associativity

If an operator is not associative then we define

• left to right (left-associative)
• 2-3-4 is evaluated as ((2-3) - 4)
• What other operators are left-associative

• right-to-left (right-associative)
• Any operators you can think of?

Associativity

If an operator is not associative then we define

• left to right (left-associative)
• 2-3-4 is evaluated as ((2-3) - 4)
• What other operators are left-associative

• right-to-left (right-associative)
• Assignment, power operator

How to encode associativity?

• Like precedence, some tools (e.g. YACC) allow associativity
specification through keywords:
• “+”: left, “^”: right

• Also like precedence, we can also encode it into the production rules

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2> <MINUS>expr expr

<NUM, 3> <NUM, 4>

Operator Name Productions

- expr : expr MINUS expr
| NUM

We want to disallow this parse tree

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2> <MINUS>expr expr

<NUM, 3> <NUM, 4>

No longer allowed

Operator Name Productions

- expr : expr MINUS NUM
| NUM

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> <NUM,?>

Lets start over

Operator Name Productions

- expr : expr MINUS NUM
| NUM

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> <NUM,4>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> <NUM,4>

<MINUS>expr <NUM,3>

Operator Name Productions

- expr : expr MINUS NUM
| NUM

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> <NUM,4>

<MINUS>expr

<NUM, 2>

<NUM, 3>

Operator Name Productions

- expr : expr MINUS NUM
| NUM

Should you have associativity when its not
required?

input: 2+3+4
expr

expr <PLUS> <NUM,4>

<PLUS>expr

<NUM, 2>

<NUM, 3>

Benefits?
Drawbacks?

Operator Name Productions

+ expr : expr PLUS expr
| NUM

Should you have associativity when its not
required?

input: 2+3+4
expr

expr <PLUS> <NUM,4>

<PLUS>expr

<NUM, 2>

<NUM, 3>

Benefits?
Drawbacks?

Good design principle to avoid ambiguous grammars,
even when strictly not required too.

Helps with debugging, etc. etc.

Many tools will warn if it detects ambiguity

Operator Name Productions

+ expr : expr PLUS NUM
| NUM

Let’s make a richer expression grammar

Operator Name Productions

Tokens:
NUM = “[0-9]+”
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT =’ \^’

Let’s do operators [+,*,-,/,^] and()

Let’s make a richer expression grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

Tokens:
NUM = “[0-9]+”
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT =’ \^’

Let’s do operators [+,*,-,/,^] and()

What associativity do operators in C have?

• https://en.cppreference.com/w/c/language/operator_precedence

https://en.cppreference.com/w/c/language/operator_precedence

New topic: Algorithms for parsing

New topic: Algorithms for parsing

One goal:
• Given a string s and a CFG G, determine if G can derive s

• We will do that be implicitly attempting to derive a parse tree for s

• Two different approaches, each with different trade-offs:
• Top down
• Bottom up

Top-down parsing
input: 2+3+4

expr

Operator Name Productions

+ expr : expr PLUS NUM
| NUM

Top-down parsing
input: 2+3+4

expr

expr <PLUS> <NUM,4>Operator Name Productions

+ expr : expr PLUS NUM
| NUM

Top-down parsing
input: 2+3+4

expr

expr <PLUS> <NUM,4>

<PLUS>expr <NUM, 3>

Operator Name Productions

+ expr : expr PLUS NUM
| NUM

Top-down parsing
input: 2+3+4

expr

expr <PLUS> <NUM,4>

<PLUS>expr

<NUM, 2>

<NUM, 3>

Operator Name Productions

+ expr : expr PLUS NUM
| NUM

Top-down parsing

Pros:
• Algorithm is simpler
• Faster than bottom-up
• Easier recovery

Cons:
• Not efficient on arbitrary grammars
• Most grammars need to be re-written

Bottom-up parsing
input: 2+3+4

<PLUS> <NUM,4><PLUS><NUM, 2> <NUM, 3>

Operator Name Productions

+ expr : expr PLUS NUM
| NUM

Bottom-up parsing
input: 2+3+4

<PLUS> <NUM,4><PLUS><NUM, 2> <NUM, 3>

Operator Name Productions

+ expr : expr PLUS NUM
| NUM expr

Bottom-up parsing
input: 2+3+4

<PLUS> <NUM,4><PLUS><NUM, 2> <NUM, 3>

Operator Name Productions

+ expr : expr PLUS NUM
| NUM expr

expr

Bottom-up parsing
input: 2+3+4

<PLUS> <NUM,4><PLUS><NUM, 2> <NUM, 3>

Operator Name Productions

+ expr : expr PLUS NUM
| NUM expr

expr

expr

Bottom up

Pros:
• can handle grammars expressed more naturally
• can encode precedence and associativity even if grammar is

ambiguous

Cons:
• algorithm is complicated
• in many cases slower than top down

Let’s start with top down

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Expanded Rule Sentential Form

start Expr

Can we derive the string (a+b)*c

Variable Value

focus

to_match

s.istring

stack

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Can we derive the string (a+b)*c

Currently we assume this
is magic and picks
the right rule every time

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

Expanded Rule Sentential Form

start Expr

Variable Value

focus

to_match

s.istring

stack

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Can we derive the string (a+b)*c

Currently we assume this
is magic and picks
the right rule every time

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

Expanded Rule Sentential Form

start Expr

1 Expr Op Unit

2 Unit Op Unit

3 '(’ Expr ‘)’ Op Unit

1 ‘(‘ Expr Op Unit ‘)’ Op Unit

2 ‘(‘ Unit Op Unit ‘)’ Op Unit

4 ‘(‘ ID Op Unit ‘)’ Op Unit

Variable Value

focus Op

to_match ‘+’

s.istring b)*c

stack Unit ‘)’ Op, Expr, None
And so on...

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Can we derive the string (a+b)*c

What can go wrong if
we don’t have a magic
choice

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

Expanded Rule Sentential Form

start Expr

Variable Value

focus

to_match

s.istring

stack

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

Can we derive the string (a+b)*c

What can go wrong

Infinite recursion!

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

Expanded Rule Sentential Form

start Expr

2 Expr Op Unit

2 Expr Op Unit Op Unit

2 Expr Op Unit Op Unit Op Unit

2 Expr Op Unit
Variable Value

focus

to_match

s.istring

stack

Top down parsing does not handle left
recursion

direct left recursion
indirect left recursion

Top down parsing cannot handle either

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

1: Expr_base ::= Unit
2: | Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Top down parsing does not handle left
recursion
• In general, any CFG can be re-written without left recursion

Eliminating direct left recursion

Fee ::= Fee “a”
| “b”

What does this grammar describe?

Eliminating direct left recursion

Fee ::= Fee “a”
| “b”

Fee ::= “b” Fee2

Fee2 ::= “a” Fee2
| “”

The grammar can be rewritten as

Eliminating direct left recursion

Fee ::= Fee A
| B

Fee ::= B Fee2

Fee2 ::= A Fee2
| “”

In general, A and B can be any sequence of non-terminals and terminals

Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
| B

Fee ::= B Fee2

Fee2 ::= A Fee2
| “”

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

Eliminating direct left recursion

Lets do this one as an example:

Fee ::= Fee A
| B

Fee ::= B Fee2

Fee2 ::= A Fee2
| “”

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

A = Op Unit
B = Unit

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expanded Rule Sentential Form

start Expr

Variable Value

focus

to_match

s.istring

stack

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expanded Rule Sentential Form

start Expr

How to handle
this case?

Variable Value

focus

to_match

s.istring

stack

root = start symbol;
focus = root;
push(None);
to_match = s.token();

while (true):
if (focus is a nonterminal)

pick next rule (A ::= B1,B2,B3...BN);
if A == “”: focus=pop(); continue;
push(BN... B3, B2);
focus = B1

else if (focus == to_match)
to_match = s.token()
focus = pop()

else if (to_match == None and focus == None)
Accept

1: Expr ::= Unit Expr2
2: Expr2 ::= Op Unit Expr2
3: | “”
4: Unit ::= ‘(‘ Expr ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expanded Rule Sentential Form

start Expr

How to handle
this case?

Variable Value

focus

to_match

s.istring

stack

How about indirect left recursion?

direct left recursion
indirect left recursion

Top down parsing cannot handle either

1: Expr ::= Expr Op Unit
2: | Unit
3: Unit ::= ‘(‘ Expr ‘)’
4: | ID
5: Op ::= ‘+’
6: | ‘*’

1: Expr_base ::= Unit
2: | Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2: | Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2: | Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

Substitute indirect non-terminal closer to initial non-terminal

How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2: | Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

Substitute indirect non-terminal closer to initial non-terminal

1: Expr_base ::= Unit
2: | Expr_base Op Unit
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

What to do with production rule 3?

How about indirect left recursion?

Identify indirect left left recursion

1: Expr_base ::= Unit
2: | Expr_op
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

Expr_base →!"# Expr_op →!"# Expr_base

Substitute indirect non-terminal closer to initial non-terminal

1: Expr_base ::= Unit
2: | Expr_base Op Unit
3: Expr_op ::= Expr_base Op Unit
4: Unit ::= ‘(‘ Expr_base ‘)’
5: | ID
6: Op ::= ‘+’
7: | ‘*’

What to do with production rule 3?
It may need to stay if another production rule references it!

Next time: algorithms for syntactic analysis

• Continue with our top down parser.
• Backtracking
• Lookahead sets

