
CSE110A: Compilers
April 11, 2022

Topics:
• Starting Module 2: Parsing
• Introduction
• Production Rules
• Derivations and Parse Trees
• A Simple Expression Grammar

..

.. ..

....

int main() {
printf(““);
return 0;
}

Announcements

• HW 1 is out
• You have 1 week left to do it

• Due April 18 by midnight

• Visit us for office hours
• Sign up for Piazza
• And thanks to those who are asking/answering questions

Announcements

• Homework clarifications

• For part 2:

All characters are case insensitive!

Announcements

• Homework clarifications

• For part 4: You should not hard code the RegEx: you should generate
it given the list of tokens

Announcements

• Homework clarifications

• For part 4: You should not hard code the RegEx: you should generate
it given the list of tokens

• How we will grade:
• Your tokens will be graded using the our solution scanner importing your

tokens
• We will then put in our own tokens to grade your SOS and NG scanners

Announcements

• Homework clarifications

• General question: How to scan “+++”

Announcements

• Homework clarifications

• General question: How to scan “+++”

• [(INCR, “++”), (PLUS, “+”)]

If you aren’t careful, in the SOS or NG scanner you could get:
[(PLUS, “+”), (PLUS, “+”), (PLUS, “+”)]

This is not correct!

Quiz

Quiz

Examples

def cat_dog(x):
if x[1] == "Cat":

return (x[0], "Dog")
return x

Modifying a value

Modifying a token type

Examples

def count_lines(x):
if x[1] == "\n":

s.lineno += 1
return x

Keeping track of statistics

What other statistics might you want?

Quiz

This is really difficult to do with token actions:
token actions take a single lexeme and return a single lexeme

Quiz

Scanner generators

• You can assume that all take in Regular expressions
• Most of the time they have nice optional operators, e.g. [0-9], +, ?

• You can assume that all of them support token actions, but they may
be expressed differently.

• You can assume that all of them have a function similar to token()
• In lex it is called yylex()

PLY Example

t_PRONOUN = "her|his|their"

Defining a token with no token action

def t_PRONOUN(t):
"her|his|their"
if t.value in ["his", "her"]:

t.value = "their"
return t

Defining a token with a token action

Quiz

Quiz

Required unless you want to write your own (take CSE211 for an example)

Quiz

Great for token actions, custom error functions, etc.

Quiz

Great for making sure your token actions are consistent. This is a shortcoming of Python

Quiz

Doesn’t really matter.
Ocaml is great for compilers (compiled)
Scheme is great for compilers (interpreted)

Quiz

Thanks for all your feedback! I have ideas for next time

It sounds like the pacing can be picked up a bit and spend more time on:
• Python code
• Corner cases (e.g. how to deal with regular expressions that share common prefixes)

Review

• We covered token actions in the quiz.

• Token actions are an optional part of a token definition
• In our case, you can just send the idy function if you don’t need one

• Token actions take in a lexeme and return a possibly refined lexeme
• KEYWORDS refine IDs
• Swap cat and dogs

• Token actions can also modify state

Review

• We also looked at using first class functions to implement our own
error functions
• We can throw an exception
• Or try to recover at a ”synchronization” point (e.g. whitespace, or ;)

Assume a scanner object s with the member istring
to keep track of the string being scanned
def recover_err():

v = s.istring[0] # Get first character
s.istring = s.istring[1:] # Chop the first
return ("ERROR", v); # Return a special ERROR lexeme

set the error function in the scanner
s.set_error(recover_err)

Review

• You should know that Scanner generators exist
• Lex

• Classic C-based Scanner
• PLY

• Python implementation of Lex
• Antlr

• Modern scanner/parser generator

• Similar interfaces, but not exactly the same
• PLY lexemes contain line/column numbers
• PLY using “token()”, lex uses “yylex()”

New module

• Parsing:
• Often times scanning is also included in parsing
• Specifically this module is about “Syntactic Analysis”

Optimizations
Optimizations

Optimizations

Compiler Architecture

Front end
input

program
machine

code

This module will finish up the front end

Back
endOptimizations

compiler

parsing code gen

optimizations
build on each other

creates
structure

string

produces
executable code

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

More detailed view

string token stream syntax tree syntax tree

IR program

optimized IR
program

ISA program

optimized ISA program

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

More detailed view

string token stream syntax tree syntax tree

IR program

optimized IR
program

ISA program

optimized ISA program

position = initial + rate * 60;

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

optimized ISA program

position = initial + rate * 60;

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

Lexical
Analysis

input
program

machine
code

Intermediate
code gen

Syntactic
Analyzer

Semantic
Analyzer

IR
optimizations

target code
gen

target code
optimizations

loop!

loop!

string token stream syntax tree syntax tree

IR program

optimized IR
program

<id,1> <assign,=> <id,2> <bin_op,+> <id,3> <bin_op,*> <num,60> <semi,;>

Token stream

=

<id,1>

<id,2>

<id,3> 60

+

*

parse tree

position = initial + rate * 60;

Syntactic Analysis

• Lexical Analysis turns a string into a stream of tokens

• Syntactic Analysis determines if the tokens fit into the syntactic
structure of the language

• In our natural language example, it describes the structure of
sentences

Syntactic Analysis

• Natural language example

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

What are valid sentences?

ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN

ARTICLE ADJECTIVE NOUN VERB

Now we check
if stream of lexemes fits
a sentence

How do we express a valid sentence?

• List of tokens:
• ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN

• Pros? Cons?

How do we express a valid sentence?

• List of tokens:
• ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN

• Pros? Cons?
• Simple, but probably too simple

How do we express a valid sentence?

• Several lists of tokens
• ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN
• ARTICLE NOUN VERB
• ARTICLE ADJECTIVE NOUN VERB
• ARTICLE ADJECTIVE ADJECTIVE NOUN VERB

• Pros? Cons?

How do we express a valid sentence?

• Several lists of tokens
• ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN
• ARTICLE NOUN VERB
• ARTICLE ADJECTIVE NOUN VERB
• ARTICLE ADJECTIVE ADJECTIVE NOUN VERB

• Pros? Cons?
• Potentially infinite choices

How do we express a valid sentence?

• Regular expressions over tokens:
• ARTICLE ADJECTIVE* NOUN VERB

• Pros? Cons?

How do we express a valid sentence?

• Regular expressions over tokens:
• ARTICLE ADJECTIVE* NOUN VERB

• Pros? Cons?
• Regular expressions worked really well for tokens
• Provides decent expressivity
• But what might go wrong?

Mathematical expressions

• tokens:
• NUM = “[0-9]+”
• PLUS = “\+”
• MULT = “*”

• Can we describe expressions?

Mathematical expressions
NUM ((PLUS | MULT) NUM)*

5 + 6

5

5 + 6 * 3

Mathematical expressions
NUM ((PLUS | MULT) NUM)*

5 + 6

5

5 + 6 * 3 But what does this one mean? What if we want different precedence?

Mathematical expressions
NUM ((PLUS | MULT) NUM)*

5 + 6

5

5 + 6 * 3 But what does this one mean? What if we want different precedence?

(5 + 6) * 3 Can we do this one?

Mathematical expressions

• tokens:
• NUM = “[0-9]+”
• PLUS = “\+”
• MULT = “*”
• OPAR = “\(“
• CPAR = “\)”

Mathematical expressions
OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

5 + 6

5

5 + 6 * 3 But what does this one mean? What if we want different precedence?

(5 + 6) * 3 Can we do this one?

Add parenthesis tokens

Mathematical expressions
OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

Seems like it works! But what is the issue?

Mathematical expressions
OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

Seems like it works! But what is the issue?

(5 + 6 * 3 What about this one?

Mathematical expressions
OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

Seems like it works! But what is the issue?

(5 + 6 * 3 What about this one?

()s are a key part of syntax. They are import for the structure we want to create and
we need to reliably detect strings that are not syntactically valid!

Context Free Grammars: A new class of languages

• Regular expressions CANNOT match
• (),
• {},
• HTML start/end tags
• etc.

• We will use context free grammars

Recall: Language theory

Some theory:

• Given a language L, a string s is either part of that language or not
• Integers are a language: “5”, “6”, “-7” is in the language. “abc” is not.

• Languages are grouped into families depending on how “hard” it is to
determine if a string is part of that language.

Recall: Language theory

image source: wikipedia

The simplest languages are regular. We used
regular expressions for tokens.
• They are fast, even in the general case
• good level of abstraction for tokens

We will now use context-free languages for
Syntactic Analysis
• Fast algorithms exist in many cases (not all)

Determining membership can be even inefficient
or even undecidable at higher levels (context-sensitive
and recursively enumerable)

Context-free languages

We will define similar to like regular languages
• In this class a context-free language is a language that can be

recognized by a context-free grammar

Context-free languages

We will define similar to like regular languages
• In this class a context-free language is a language that can be

recognized by a context-free grammar

•

• What is a context-free grammar?

Context-free grammar

We will use Backus–Naur form (BNF) form

• non-terminals are language ids. You can
have as many as you need.

• each non-terminal maps to one or more
production rules.

• one non-terminal is designated as the
start or goal symbol

non-terminal-1 ::= production-rule-1
| production-rule-2
| ...

non-terminal-2 ::= production-rule-1
| production-rule-2
| ...

....

Context-free grammar

We will use Backus–Naur form (BNF) form

• Production rules contain a sequence of
either non-terminals or terminals

• In our class, terminals will either be
string constants or tokens

add_expr ::= NUM ‘+’ NUM

mult_expr ::= NUM ‘*’ NUM

joint_expr ::= add_expr ‘*’ add_expr

simple_expr ::= NUM ‘+’ NUM
| NUM ‘*’ NUM

Examples:

Deriving strings

A CFG G is said to derive a string s if s is in the language of G

We can show a string s belongs to G by providing a derivation

SheepNoise ::= ‘baa’ SheepNoise
| ‘baa’ Start with a sentinel string: a string containing

terminals and non-terminals:

“SheepNoise”

Then pick one of the non-terminals and expand it

Deriving strings

1: SheepNoise ::= ‘baa’ SheepNoise
2: | ‘baa’

RULE Sentential Form

start SheepNoise

Give each production rule a numeric id

RULE Sentential Form

start SheepNoise

Deriving strings

1: SheepNoise ::= ‘baa’ SheepNoise
2: | ‘baa’

RULE Sentential Form

start SheepNoise

2 baa

Give each production rule a numeric id

RULE Sentential Form

start SheepNoise

1 baa SheepNoise

2 baa baa

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

Can we derive the string (a+b)*c

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Can we derive the string (a+b)*c

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Can we derive the string (a+b)*c

We can visualize this as a tree:

Expr

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Can we derive the string (a+b)*c

We can visualize this as a tree:

Expr

(ID, c)OpExpr

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Can we derive the string (a+b)*c

We can visualize this as a tree:

Expr

(ID, c)OpExpr

*

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Can we derive the string (a+b)*c

We can visualize this as a tree:

Expr

(ID, c)OpExpr

*
()Expr

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Can we derive the string (a+b)*c

We can visualize this as a tree:

Expr

(ID, c)OpExpr

*
()Expr

Op (ID, b)Expr

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Can we derive the string (a+b)*c

We can visualize this as a tree:

Expr

(ID, c)OpExpr

*
()Expr

Op (ID, b)Expr

+

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Are there other ways to derive(a+b)*c?

We can visualize this as a tree:

Expr

(ID, c)OpExpr

*
()Expr

Op (ID, b)Expr

+(ID, a)

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Are there other ways to derive(a+b)*c?

RULE Sentential Form

start Expr

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

RULE Sentential Form

start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr + ID) * ID

3 (ID + ID) * ID

Are there other ways to derive(a+b)*c?

RULE Sentential Form

start Expr

2 Expr Op ID

1 (Expr) Op ID

2 (Expr Op ID) Op ID

3 (ID Op ID) Op ID

4 (ID + ID) Op ID

5 (ID + ID) + ID

right derivation left derivation

A more complicated example
1: Expr ::= ‘(’ Expr ‘)’
2: | Expr Op ID
3: | ID
4: Op ::= ‘+’
5: Op | ‘*’

Are there other ways to derive(a+b)*c?

RULE Sentential Form

start Expr

2 Expr Op ID

1 (Expr) Op ID

2 (Expr Op ID) Op ID

3 (ID Op ID) Op ID

4 (ID + ID) Op ID

5 (ID + ID) + ID

left derivation

Expr

(ID, c)OpExpr

*
()Expr

Op (ID, b)Expr

+(ID, a)
same parse tree

Ambiguous grammars

• What happens when different derivations have different parse trees?

1: Statement ::= ”if” Expr “then” Statement “else” Statement
2: | ”if” Expr “then” Statement
3: | Assignment
4: |

if Expr1 then if Expr2 then Assignment1 else Assignment2

can we derive this string?

Next few figures taken from the EAC book (Chapter 3.1)

Ambiguous grammars
1: Statement ::= ”if” Expr “then” Statement “else” Statement
2: | ”if” Expr “then” Statement
3: | Assignment
4: |

if Expr1 then if Expr2 then Assignment1 else Assignment2

Ambiguous grammars
1: Statement ::= ”if” Expr “then” Statement “else” Statement
2: | ”if” Expr “then” Statement
3: | Assignment
4: |

if Expr1 then if Expr2 then Assignment1 else Assignment2

Valid derivation

Ambiguous grammars
1: Statement ::= ”if” Expr “then” Statement “else” Statement
2: | ”if” Expr “then” Statement
3: | Assignment
4: |

if Expr1 then if Expr2 then Assignment1 else Assignment2

Valid derivation

Ambiguous grammars

Valid derivation Also a valid derivation

1: Statement ::= ”if” Expr “then” Statement “else” Statement
2: | ”if” Expr “then” Statement
3: | Assignment
4: |

if Expr1 then if Expr2 then Assignment1 else Assignment2

Ambiguous grammars

Valid derivation Also a valid derivation

Is this an issue? Don’t we only care if a grammar can derive a string?

Meaning into structure

• We want to start encoding meaning into the parse structure. We will
want as much structure as possible as we continue through the
compiler

• The structure is that we want evaluation of program to correspond to
a post order traversal of the parse tree (also called the natural
traversal)

Post order traversal

visiting for for different types
of traversals:

pre order?
in order?
post order

Post order traversal

4

1 2 3

visiting for for different types
of traversals:

post order

Ambiguous grammars

Valid derivation Also a valid derivation

When we encode meaning into structure, these are very different programs

We will study how to eliminate ambiguity

• But I want to close out today with an interesting case study

Case study

• Using a CFG, you can derive random
strings in a language

• C-Smith
• Generates random C programs
• Used to test compiler correctness

Random C
program

clang -00

clang -03

gcc ...

run

run

run

Check outcome. Is it the same?
if not, then there is a bug in one
of the compilers

Case study

• 400+ compiler bugs found

• Demo

Random C
program

clang -00

clang -03

gcc ...

run

run

run

Check outcome. Is it the same?
if not, then there is a bug in one
of the compilers

Case study

• Big challenge: Undefined behavior

• Even though the program is
syntactically valid, the behavior may be
undefined

Random C
program

clang -00

clang -03

gcc ...

run

run

run

Check outcome. Is it the same?
if not, then there is a bug in one
of the compilers

int main() {
int x;
printf("%d\n", x);
return 0;

}

Uninitialized variables can return
anything!

Use advanced compiler analysis
to catch these issues

On Wednesday

• How to remove ambiguity from grammars
• Precedence
• Associativity

