CSE110A: Compilers

April 11, 2022

Topics:

e Starting Module 2: Parsing
* Introduction
* Production Rules
e Derivations and Parse Trees
* A Simple Expression Grammar

int main() {
printf(“*);
return 0;

}

N

Announcements

 HW 1 is out

 You have 1 week left to do it

* Due April 18 by midnight

* Visit us for office hours
 Sign up for Piazza
* And thanks to those who are asking/answering questions

Announcements

* Homework clarifications
* For part 2:

« HNUM: a hexidecimal number. Like in C, it should start with a 0x followed by digits, which
can include a-f. The characters should be case insensitive.

All characters are case insensitive!

Announcements

* Homework clarifications

* For part 4: You should not hard code the RegEx: you should generate
it given the list of tokens

Announcements

* Homework clarifications

* For part 4: You should not hard code the RegEx: you should generate
it given the list of tokens

* How we will grade:

* Your tokens will be graded using the our solution scanner importing your
tokens

* We will then put in our own tokens to grade your SOS and NG scanners

Announcements

* Homework clarifications

* General question: How to scan “+++"

Announcements

* Homework clarifications
* General question: How to scan “+++"

* [(INCR, “++"), (PLUS, “+")]

If you aren’t careful, in the SOS or NG scanner you could get:
[(PLUS, “+"), (PLUS, “+"), (PLUS, “+")]

This is not correct!

Quiz

Which of the following are token actions NOT great for:

(O Changing the value of a token
(O Changing the token type

(O Splitting a token into multiple tokens

(O Keeping track of scanning statistics (e.g. the number of IDs seen)

Examples

Modifying a value

def cat_dog(x):

if x[1] == "Cat":
return (x[@], "Dog")
return X

Modifying a token type

keyWOIdS — [("INT", "int"), ("FLOAT", "float"), ("IF", "if")]

def check_keywords(t):
keyvalues = [x[1] for x in keywords]
if t[1] in keyvalues:
lexeme = keywords[keyvalues.index(t[1]1)]
return lexeme

return t

Examples

Keeping track of statistics

def count_lines(x):

if x[1] == "\n":
s. lineno += 1
return Xx

What other statistics might you want?

Quiz

Which of the following are token actions NOT great for:

(O Changing the value of a token

(O Changing the token type

(O Splitting a token into multiple tokens

(O Keeping track of scanning statistics (e.g. the number of IDs seen)

This is really difficult to do with token actions:
token actions take a single lexeme and return a single lexeme

Quiz

All scanner generators have the same interface, which makes it very easy to switch from one
generator (e.g. Lex) to another (e.g. PLY)

O True

O False

Scanner generators

* You can assume that all take in Regular expressions
* Most of the time they have nice optional operators, e.g. [0-9], +, ?

* You can assume that all of them support token actions, but they may
be expressed differently.

* You can assume that all of them have a function similar to token ()
* Inlexitis called yylex ()

PLY Example

Defining a token with no token action

t_PRONOUN = "her|his|their"

Defining a token with a token action

def t_PRONOUN(t):
"her|his|their"
if t.value in ["his", "her"]:
t.value = "their"
return t

Quiz

Which of the following language features make scanner implementations easier?

() Regular expression matcher

(] Higher order functions

J Types

() Interpreted languages

Quiz

Which of the following language features make scanner implementations easier?

() Regular expression matcher

(] Higher order functions

(J Types

(] Interpreted languages

Required unless you want to write your own (take CSE211 for an example)

Quiz

Which of the following language features make scanner implementations easier?

(] Regular expression matcher

(7] Higher order functions

(J Types

(] Interpreted languages

Great for token actions, custom error functions, etc.

Quiz

Which of the following language features make scanner implementations easier?

() Regular expression matcher

(] Higher order functions

J Types

(] Interpreted languages

Great for making sure your token actions are consistent. This is a shortcoming of Python

Quiz

Which of the following language features make scanner implementations easier?

(] Regular expression matcher

(] Higher order functions

(] Types

() Interpreted languages

Doesn’t really matter.
Ocaml is great for compilers (compiled)
Scheme is great for compilers (interpreted)

Quiz

It is the last lecture of Module 1; please let me know any feedback you might have about the
module: e.g. what you enjoyed or what you think could be improved.

This is a new class for me and I'm trying to revamp the lectures and homework so your feedback is

very useful to me!

Thanks for all your feedback! | have ideas for next time

It sounds like the pacing can be picked up a bit and spend more time on:

* Python code
* Corner cases (e.g. how to deal with regular expressions that share common prefixes)

Review

* We covered token actions in the quiz.

* Token actions are an optional part of a token definition
* |n our case, you can just send the idy function if you don’t need one

* Token actions take in a lexeme and return a possibly refined lexeme
 KEYWORDS refine IDs
e Swap cat and dogs

* Token actions can also modify state

Review

* We also looked at using first class functions to implement our own
error functions

* We can throw an exception
* Or try to recover at a “synchronization” point (e.g. whitespace, or ;)

Assume a scanner object s with the member istring
to keep track of the string being scanned
def recover_err():
v = s.istring[@] # Get first character
s.istring = s.istringl[1:] # Chop the first
return ("ERROR", v); # Return a special ERROR lexeme

set the error function in the scanner
s.set_error(recover_err)

Review

* You should know that Scanner generators exist

* Lex
e Classic C-based Scanner

* PLY

* Python implementation of Lex

o Antlr
* Modern scanner/parser generator

 Similar interfaces, but not exactly the same
* PLY lexemes contain line/column numbers
e PLY using “token()”, lex uses “yylex()”

New module

* Parsing:
e Often times scanning is also included in parsing
 Specifically this module is about “Syntactic Analysis”

Compiler Architecture

input
program

string

-

.

parsing

creates
structure

‘ Front end ‘

compiler

produces
executable code

Back

Optimizations ‘ ‘

v code gen
optimizations
build on each other /

end

This module will finish up the front end

machine
code

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
. optimized IR
string token stream syntax tree syntax tree program
target code
gen
ISA program
target code loop!

optimizations

optimized ISA program _
machine

More detailed view code

IR program

Input I Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:
: optimized IR
string token stream syntax tree syntax tree program
. . .. target code
position = initial + rate * 60; gen
ISA program
target code loop!

optimizations

optimized ISA program _
machine

More detailed view code

IR program

Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:

. optimized IR
Stnng token stream SyntaX tree Syntax tree program
position = initial + rate * 60; targg;::ode
Token stream
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;>

target code
8 loop!

optimizations

optimized ISA program _
machine

code

position = initial + rate * 60;

IR program
Input - Lexical Syntactic Semantic Intermediate IR loop!
program Analysis Analyzer Analyzer code gen optimizations p:

. optimized IR
string token stream syntax tree syntax tree program
Token stream target code
<id, 1> <assign,=> <id,2> <bin op,+> <id,3> <bin op,*> <num, 60> <semi, ;> gen
parse tree

/ \ target code Ioop!
: + optimizations p:
<ld, 1> / \
<id, 2> / *

I

<id, 3> 60

machine
code

Syntactic Analysis

* Lexical Analysis turns a string into a stream of tokens

* Syntactic Analysis determines if the tokens fit into the syntactic
structure of the language

* In our natural language example, it describes the structure of
sentences

Syntactic Analysis

* Natural language example

The dog ran across the park

-

ARTICLE

T

NOUN

VERB

PREPOSITION

ARTICLE

What are valid sentences?

ARTICLE NOUN VERE PREPOSITION ARTICLE NOUN

ARTICLE ADJECTIVE NOUN VERB

NOUN

Now we check
if stream of lexemes fits
a sentence

How do we express a valid sentence?

* List of tokens:
NOUN PREPOSITION NOUN

* Pros? Cons?

How do we express a valid sentence?

* List of tokens:
NOUN PREPOSITION NOUN

* Pros? Cons?
* Simple, but probably too simple

How do we express a valid sentence?

e Several lists of tokens
* ARTICLE NOUN VERBE PREPOSITION ARTICLE NOUN
e ARTICLE NOUN VERB

* ARTICLE ADJECTIVE NOUN VERB
* ARTICLE ADJECTIVE ADJECTIVE NOUN VERB

e Pros? Cons?

How do we express a valid sentence?

e Several lists of tokens
* ARTICLE NOUN VERBE PREPOSITION ARTICLE NOUN
e ARTICLE NOUN VERB

* ARTICLE ADJECTIVE NOUN VERB
* ARTICLE ADJECTIVE ADJECTIVE NOUN VERB

* Pros? Cons?
» Potentially infinite choices

How do we express a valid sentence?

* Regular expressions over tokens:
ADJECTIVE* NOUN

e Pros? Cons?

How do we express a valid sentence?

* Regular expressions over tokens:
ADJECTIVE* NOUN

* Pros? Cons?
* Regular expressions worked really well for tokens
* Provides decent expressivity
e But what might go wrong?

Mathematical expressions

* tokens:
*NUM = “[0-9]+"
* PLUS = “\+"
* MULT = “*”

e Can we describe expressions?

Mathematical expressions

NUM ((PLUS | MULT) NUM)*

5 + 6

5+ 6 * 3

Mathematical expressions

NUM ((PLUS | MULT) NUM)*

5 + 6

5+ 6 * 3

But what does this one mean? What if we want different precedence?

Mathematical expressions

NUM ((PLUS | MULT) NUM)*

5 + 6

5+ 6 * 3

(5 + 6) * 3

But what does this one mean? What if we want different precedence?

Can we do this one?

Mathematical expressions

* tokens:
e NUM = “[0-9]+
e PLUS = “\+"
e MULT = “*
* OPAR = “\ ('
* CPAR = “\)

Mathematical expressions

OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

5 + 6

5+ 6 * 3

(5 + 6) * 3

Add parenthesis tokens

But what does this one mean? What if we want different precedence?

Can we do this one?

Mathematical expressions

OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

Seems like it works! But what is the issue?

Mathematical expressions

OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

Seems like it works! But what is the issue?

(5 + 6 * 3 What about this one?

Mathematical expressions

OPAR? NUM ((PLUS | MULT) OPAR? NUM CPAR?)*

Seems like it works! But what is the issue?

(5 + 6 * 3 What about this one?

()s are a key part of syntax. They are import for the structure we want to create and
we need to reliably detect strings that are not syntactically valid!

Context Free Grammars: A new class of languages

* Regular expressions CANNOT match

* (),

* {},
 HTML start/end tags

* etc.

* We will use context free grammars

Recall: Language theory

Some theory:

* Given a language L, a string s is either part of that language or not
* Integers are a language: “5”, “6”, “-7” is in the language. “abc” is not.

* Languages are grouped into families depending on how “hard” it is to
determine if a string is part of that language.

Recall: Language theory

recursively enumerable

context-sensitive

context-free

image source: wikipedia

The simplest languages are regular. We used
regular expressions for tokens.

* They are fast, even in the general case

» good level of abstraction for tokens

We will now use context-free languages for
Syntactic Analysis
* Fast algorithms exist in many cases (not all)

Determining membership can be even inefficient
or even undecidable at higher levels (context-sensitive
and recursively enumerable)

Context-free languages

We will define similar to like regular languages

* In this class a context-free language is a language that can be
recognized by a context-free grammar

Context-free languages

We will define similar to like regular languages

* In this class a context-free language is a language that can be
recognized by a context-free grammar

* What is a context-free grammar?

Context-free grammar

We will use Backus—Naur form (BNF) form

* non-terminals are language ids. You can
have as many as you need.

e each non-terminal maps to one or more
production rules.

* one non-terminal is designated as the
start or goal symbol

non-terminal-1

non-terminal-2

production-rule-1
production-rule-2

production-rule-1
production-rule-2

Context-free grammar

We will use Backus—Naur form (BNF) form Examples:

add expr ::= NUM ‘+’' NUM
* Production rules contain a sequence of
either non-terminals or terminals

mult expr ::= NUM ‘*’ NUM
* |n our class, terminals will either be joint expr ::= add_expr ‘*’ add expr
string constants or tokens
simple expr ::= NUM ‘+’ NUM

| NUM ‘*’ NUM

Deriving strings
A CFG G is said to derive a string s if sis in the language of G

We can show a string s belongs to G by providing a derivation

SheepNoise ::= ‘baa’ SheepNoise

‘baa’ : . . : .
| Start with a sentinel string: a string containing

terminals and non-terminals:

“SheepNoise”

Then pick one of the non-terminals and expand it

RULE

start

Deriving strings

Give each production rule a numeric id

1: SheepNoise ::= ‘baa’ SheepNoise
2 | ‘baa’

Sentential Form RULE

SheepNoise start

Sentential Form

SheepNoise

Deriving strings

Give each production rule a numeric id

1: SheepNoise ::= ‘baa’ SheepNoise

2: ‘baa’
RULE Sentential Form RULE Sentential Form
start SheepNoise start SheepNoise
2 baa 1 baa SheepNoise

2 baa baa

A more complicated example

l: Expr ::= ‘(' Expr ‘)’

2: Expr Op ID . |

3: ID Can we derive the string (a+b) *c
4: Op 2= 4!

5: Op sk

RULE Sentential Form

start Expr

A more complicated example

l: Expr ::= ‘(' Expr ')’

2: Expr Op ID

3. D Can we derive the string (at+b) *c
4: Op 2= 4

5: Op 1k

RULE Sentential Form
start Expr

2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID
4 (Expr +1D) * ID
3 (ID+1D) *ID

A more complicated example

l: ExXpr ::= ‘(' Expr ‘)’
2: Expr Op ID . |
3: ID Can we derive the string (a+b) *c
4: Op 2= 4!
5: Op sk
We can visualize this as a tree:
RULE Sentential Form Expr
start Expr
2 Expr Op ID
S Expr * ID
1 (Expr) * ID
2 (Expr Op ID) * ID
4 (Expr +1D) * ID
3 (ID+1ID) *ID

A more complicated example

l: Expr ::= ‘(' Expr ')’

2: Expr Op ID . |
3: ID Can we derive the string (a+b) *c
4: Op 2= 4!
5: Op sk
We can visualize this as a tree:
RULE Sentential Form Expr
start Expr / \
2 Expr Op ID xor o0 .0
S Expr * ID
1 (Expr) * ID
2 (Expr Op ID) * ID
4 (Expr +1D) * ID
3 (ID+1ID) *ID

A more complicated example

l: Expr ::= ‘(' Expr ')’

2: Expr Op ID . |
3: ID Can we derive the string (a+b) *c
4: Op 2= 4!
5: Op sk
We can visualize this as a tree:
RULE Sentential Form Expr
start Expr / \
2 Expr Op ID xor o0 .0
S Expr * ID
1 (Expr) * ID !
2 (Expr Op ID) * ID
4 (Expr + ID) * ID
3 (ID+1ID) *ID

A more complicated example

1l: Expr ::= ‘(' Expr ')’
2: Expr Op ID . |
3: ID Can we derive the string (a+b) *c
4: Op 2= 4!
5: Op 1% 7
We can visualize this as a tree:

RULE Sentential Form Expr
start Expr / \
2 Expr Op ID xor o0 .0
3 Expr * ID

" RN
1 (Expr) * 1D (Expr) .
2 (Expr Op ID) * ID
4 (Expr + ID) * ID
3 (ID+1ID) *ID

A more complicated example

l: ExXpr ::= ‘(' Expr ‘)’
2: Expr Op ID . _
3. ID Can we derive the string (a+b) *c
4: Op = M+
5: Op tx !
We can visualize this as a tree:

RULE Sentential Form Expr
start Expr / \
2 Expr Op ID Expr Op (ID, c)
5 Expr * ID

i <N
1 (Expr) * ID (Expr) .
2 (Expr Op ID) * ID / \
4 (EXpI" + |D) *1D Expr Op (|D, b)
3 (ID+1D) * ID

A more complicated example

l: ExXpr ::= ‘(' Expr ‘)’
2: Expr Op ID . _
3. ID Can we derive the string (a+b) *c
4: Op = M+
5: Op tx !
We can visualize this as a tree:

RULE Sentential Form Expr
start Expr / \
2 Expr Op ID Expr Op (ID, c)
5 Expr * ID

i <N
1 (Expr) * ID (Expr) .
2 (Expr Op ID) * ID / \
4 (Expr + |D) *1D Expr Op (|D, b)
3 (ID+1D) * ID

A more complicated example

l: Expr ::= ‘(' Expr ')’
2 Expr Op ID Are there other ways to derive (a+b) *c?
3: ID
4: Op = M+
5: Op tx !
We can visualize this as a tree:
RULE Sentential Form Expr
start Expr / \
2 Expr Op ID Expr Op (ID, c)
5 Expr * ID / / \
1 (Expr) * ID (Expr) .
2 (Expr Op ID) * ID / \
4 (Expr + ID) * ID Expr Op (ID, b)
3 (ID +1D) * ID

(ID, a) +

A more complicated example

l: Expr ::= ‘(' Expr ')’

2 Expr Op ID Are there other ways to derive (a+b) *c?
3: ID

4: Op 2= 47

5: Op tx !

RULE Sentential Form RULE Sentential Form
start Expr start Expr
2 Expr Op ID

5 Expr * ID

1 (Expr) * ID

2 (Expr Op ID) * ID

4 (Expr +1D) * ID

3 (ID +1D) * ID

A more complicated example

Expr Op ID

Sentential Form
Expr

Expr Op ID

Expr * ID

(Expr) * ID

Expr Op ID) * ID

l: Expr ::= ‘(' Expr ')’
2:

3: ID
4: Op = 4
5: Op tx !
RULE

start

2

5

1

2

4

3

right derivation

(
(Expr +1D) * ID
(ID + ID) * ID

Are there other ways to derive (a+b) *c?

RULE

start

g | BT W N[N

Sentential Form
Expr

Expr Op ID
(Expr) Op ID
(Expr Op ID) Op ID
(ID Op ID) Op ID
(ID+1D) Op ID
(ID+1D) + ID

left derivation

A more complicated example

l: ExXpr ::= ‘(' Expr ‘)’
2. Expr Op ID Are there other ways to derive (a+b) *c?
3: ID
4: Op 2=t
5: Op L%t
Expr
RULE Sentential Form
/ \ - Expr
Expr Op (1D, c) 2 Expr Op ID
e / \ 1 (Expr) Op ID
(Expr)
* 2 (Expr Op ID) Op ID
/ \ 3 (ID Op ID) Op ID
Expr Op (ID, b) 4 (ID+1D) Op ID
same parse tree . (ID+ID) +1D

(ID, a) *
left derivation

Ambiguous grammars

* What happens when different derivations have different parse trees?

l: Statement ::= "if” Expr “ " Statement “ " Statement
2: | "if"” Expr “ ” Statement
3: | Assignment
4: |
can we derive this string?
if Exprl if Expr2 Assignmentl Assignment2

Next few figures taken from the EAC book (Chapter 3.1)

Ambiguous grammars

l: Statement ::= "if” Expr “ " Statement “ " Statement
2: | "if"” Expr “ ” Statement
3: | Assignment
4: |
if Expr; if Expr, Assignment; Assignment,
Statement
i f Expr, then Statement

e

Ambiguous grammars

l: Statement ::= ”"if” Expr “then” Statement “ " Statement
2: "if"” Expr “then” Statement
3: Assignment
4: | e o o o
if Expr; then if Expr, then Assignment; Assignment,
Statement
if Expr, then Statement

if Expr, then Statement else Statement

| |

Assignment, Assignment;

Valid derivation

Ambiguous grammars

l: Statement ::= "if” Expr “then” Statement “else” Statement
2 "if"” Expr “then” Statement

3: | Assignment
4

if Expr; then if Expr, then Assignment; else Assignment,

Statement Statement
if Expr, then Statement i f Expr, then Statement else Statement

if Expr, then Statement else Statement

| |

Assignment, Assignment;

Valid derivation

Ambiguous grammars

l: Statement ::= "if” Expr “then” Statement “else” Statement
2 "if"” Expr “then” Statement

3: | Assignment
4

if Expr; then if Expr, then Assignment; else Assignment,

Statement Statement
if Expr, then Statement if Expry then Statement else Statement
if Expr, then Statelment else Statelment if Exprp, then Statement Assignment,
Assignment, Assignment; J

Assignment,

Valid derivation Also a valid derivation

Ambiguous grammars

Is this an issue? Don’t we only care if a grammar can derive a string?

Statement
if Expr, then Statement

if Expr, then Statement else Statement

| |

Assignment, Assignment;

Valid derivation

Statement
if Expr, then Statement else Statement

/K 1

if Expr, then Statement Assignment,

|

Assignment,

Also a valid derivation

Meaning into structure

* We want to start encoding meaning into the parse structure. We will
want as much structure as possible as we continue through the
compiler

* The structure is that we want evaluation of program to correspond to
a post order traversal of the parse tree (also called the natural
traversal)

Post order traversal

visiting for for different types
of traversals:

pre order?
in order?
post order

Post order traversal

visiting for for different types
of traversals:

post order

Ambiguous grammars

When we encode meaning into structure, these are very different programs

Statement
if Expr, then Statement

if Expr, then Statement else Statement

| |

Assignment, Assignment;

Valid derivation

Statement
if Expr, then Statement else Statement

/K 1

if Expr, then Statement Assignment;

|

Assignment,

Also a valid derivation

We will study how to eliminate ambiguity

* But | want to close out today with an interesting case study

Case study

* Using a CFG, you can derive random

strings in a language

e C-Smith
* Generates random C programs
* Used to test compiler correctness

clang-00 —

RandkomC =~ clang-03 ——

gec... ——*

run

run

run

Check outcome. Is it the same?
if not, then there is a bug in one
of the compilers

Case study

* 400+ compiler bugs found

* Demo

clang-00 — run

Check outcome. Is it the same?
RandomC =~ » clang-03 — . if not, then there is a bug in one

program \ of the compilers
gec... ———

run

Case StUdy int main() {

int x;
, . . printf("%d\n", x);
* Big challenge: Undefined behavior 0;
5
. Uninitialized variables can return
* Even though the program is anything!
syntactically valid, the behavior may be | |
. Use advanced compiler analysis
undefined to catch these issues
clang-00 — run

Check outcome. Is it the same?
if not, then there is a bug in one

RandkomC ~ » ¢lang-03 —— run
of the compilers

gecc... ——* run

On Wednesday

* How to remove ambiguity from grammars
* Precedence
* Associativity

